铁磁和铁磁双钙钛矿中拓扑Weyl态和节环态的共存

Xinlei Zhao, P. Guo, Fengjie Ma, Zhong-yi Lu
{"title":"铁磁和铁磁双钙钛矿中拓扑Weyl态和节环态的共存","authors":"Xinlei Zhao, P. Guo, Fengjie Ma, Zhong-yi Lu","doi":"10.1103/PHYSREVB.103.085138","DOIUrl":null,"url":null,"abstract":"Magnetic topological quantum materials have attracted great attention due to their exotic topological quantum physics induced by the interplay among crystalology, magnetism, and topology, which is of profound importance to fundamental research and technology applications. However, limited materials are experimentally available, most of whom are realized by magnetic impurity doping or heterostructural constructions. In this work, based on the first-principles calculations, we predict that double perovskite Ba2CdReO6 is an intrinsic ferromagnetic topological semi-half-metal, while the ferrimagnetic double perovskite with space group symmetry Fm-3m, such as Ba2FeMoO6, belongs to topological half-metal. One pair of Weyl points and fully spin-polarized nodal-ring states are found in the vicinity of the Fermi level in Ba2CdReO6. Its two-dimensional nearly flat drumhead surface states are fully spin-polarized. In Ba2FeMoO6, however, there exist four pairs of Weyl points and two fully spin-polarized nodal-rings near the Fermi level. These topological properties are stable in the presence of spin-orbit coupling. This makes these materials be an appropriate platform for studying the emerging intriguing properties, especially for the applications in spintronics, information technology, and topological superconductivity.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Coexistence of topological Weyl and nodal-ring states in ferromagnetic and ferrimagnetic double perovskites\",\"authors\":\"Xinlei Zhao, P. Guo, Fengjie Ma, Zhong-yi Lu\",\"doi\":\"10.1103/PHYSREVB.103.085138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic topological quantum materials have attracted great attention due to their exotic topological quantum physics induced by the interplay among crystalology, magnetism, and topology, which is of profound importance to fundamental research and technology applications. However, limited materials are experimentally available, most of whom are realized by magnetic impurity doping or heterostructural constructions. In this work, based on the first-principles calculations, we predict that double perovskite Ba2CdReO6 is an intrinsic ferromagnetic topological semi-half-metal, while the ferrimagnetic double perovskite with space group symmetry Fm-3m, such as Ba2FeMoO6, belongs to topological half-metal. One pair of Weyl points and fully spin-polarized nodal-ring states are found in the vicinity of the Fermi level in Ba2CdReO6. Its two-dimensional nearly flat drumhead surface states are fully spin-polarized. In Ba2FeMoO6, however, there exist four pairs of Weyl points and two fully spin-polarized nodal-rings near the Fermi level. These topological properties are stable in the presence of spin-orbit coupling. This makes these materials be an appropriate platform for studying the emerging intriguing properties, especially for the applications in spintronics, information technology, and topological superconductivity.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.085138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.085138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

磁性拓扑量子材料由于其晶体学、磁性和拓扑学相互作用所产生的奇异拓扑量子物理特性而受到人们的广泛关注,对基础研究和技术应用具有深远的意义。然而,实验上可用的材料有限,大多数是通过磁性杂质掺杂或异质结构来实现的。本文基于第一性原理计算,预测双钙钛矿Ba2CdReO6为本构铁磁拓扑半金属,而空间群对称为Fm-3m的铁磁双钙钛矿如Ba2FeMoO6属于拓扑半金属。在Ba2CdReO6的费米能级附近发现了一对Weyl点和完全自旋极化的节点环态。它的二维近平鼓面表面态是完全自旋极化的。而在Ba2FeMoO6中,在费米能级附近存在四对Weyl点和两个完全自旋极化的节点环。这些拓扑性质在自旋-轨道耦合存在下是稳定的。这使得这些材料成为研究新出现的有趣性质的合适平台,特别是在自旋电子学,信息技术和拓扑超导方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coexistence of topological Weyl and nodal-ring states in ferromagnetic and ferrimagnetic double perovskites
Magnetic topological quantum materials have attracted great attention due to their exotic topological quantum physics induced by the interplay among crystalology, magnetism, and topology, which is of profound importance to fundamental research and technology applications. However, limited materials are experimentally available, most of whom are realized by magnetic impurity doping or heterostructural constructions. In this work, based on the first-principles calculations, we predict that double perovskite Ba2CdReO6 is an intrinsic ferromagnetic topological semi-half-metal, while the ferrimagnetic double perovskite with space group symmetry Fm-3m, such as Ba2FeMoO6, belongs to topological half-metal. One pair of Weyl points and fully spin-polarized nodal-ring states are found in the vicinity of the Fermi level in Ba2CdReO6. Its two-dimensional nearly flat drumhead surface states are fully spin-polarized. In Ba2FeMoO6, however, there exist four pairs of Weyl points and two fully spin-polarized nodal-rings near the Fermi level. These topological properties are stable in the presence of spin-orbit coupling. This makes these materials be an appropriate platform for studying the emerging intriguing properties, especially for the applications in spintronics, information technology, and topological superconductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信