评估5G及以后技术在加强自动驳船控制方面的潜力

Nina Slamnik-Kriještorac, W. Vandenberghe, Najmeh Masoudi-Dione, Stijn Van Staeyen, Xiangyu Lian, Rakshith Kusumakar, J. Márquez-Barja
{"title":"评估5G及以后技术在加强自动驳船控制方面的潜力","authors":"Nina Slamnik-Kriještorac, W. Vandenberghe, Najmeh Masoudi-Dione, Stijn Van Staeyen, Xiangyu Lian, Rakshith Kusumakar, J. Márquez-Barja","doi":"10.1109/EuCNC/6GSummit58263.2023.10188380","DOIUrl":null,"url":null,"abstract":"As the shipping sector has been one of the major impact factors on economic growth over the past decades, its digitalization is expected to make unprecedented improvements in the safety and reliability of ship control, thereby ultimately enabling the autonomous operations of ships. The automated control of ships will not only mitigate the risks of human mistakes but will also improve the efficiency of operations by preventing unexpected delays while being environmentally sustainable. With the advent of the Internet of Ships (IoS) sector, well-known and mature concepts of the Internet of Things (IoT) are being applied to ships and ports, thereby making them more and more equipped with sensing and communication capabilities that set the ground for improved situational awareness and better decision-making. However, there are many challenges that need to be thoroughly studied, such as the communication between barges, ports, and services, as increased network latency and limitations on the bandwidth imposed by satellite communications could introduce significant risks for accident occurrence, ultimately affecting the overall automated operation/teleoperation of barges. In this paper, we present one of the first attempts to test the potential of 5G systems for automating barge operations, starting from teleoperation as an enabler of automation, thereby creating and validating a cellular-based automated barge control system in a real-life environment. In this system, the barge is sailing in a busy port area such as one of the Port of Antwerp Bruges, while being connected to the 5G network. We assess the quality of the 5G communication system and present and discuss our initial results on the enhancements that 5G could bring to teleoperation and automation of the barge control.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"51 1","pages":"693-698"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Assessing the Potential of 5G and beyond for Enhancing Automated Barge Control\",\"authors\":\"Nina Slamnik-Kriještorac, W. Vandenberghe, Najmeh Masoudi-Dione, Stijn Van Staeyen, Xiangyu Lian, Rakshith Kusumakar, J. Márquez-Barja\",\"doi\":\"10.1109/EuCNC/6GSummit58263.2023.10188380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the shipping sector has been one of the major impact factors on economic growth over the past decades, its digitalization is expected to make unprecedented improvements in the safety and reliability of ship control, thereby ultimately enabling the autonomous operations of ships. The automated control of ships will not only mitigate the risks of human mistakes but will also improve the efficiency of operations by preventing unexpected delays while being environmentally sustainable. With the advent of the Internet of Ships (IoS) sector, well-known and mature concepts of the Internet of Things (IoT) are being applied to ships and ports, thereby making them more and more equipped with sensing and communication capabilities that set the ground for improved situational awareness and better decision-making. However, there are many challenges that need to be thoroughly studied, such as the communication between barges, ports, and services, as increased network latency and limitations on the bandwidth imposed by satellite communications could introduce significant risks for accident occurrence, ultimately affecting the overall automated operation/teleoperation of barges. In this paper, we present one of the first attempts to test the potential of 5G systems for automating barge operations, starting from teleoperation as an enabler of automation, thereby creating and validating a cellular-based automated barge control system in a real-life environment. In this system, the barge is sailing in a busy port area such as one of the Port of Antwerp Bruges, while being connected to the 5G network. We assess the quality of the 5G communication system and present and discuss our initial results on the enhancements that 5G could bring to teleoperation and automation of the barge control.\",\"PeriodicalId\":65870,\"journal\":{\"name\":\"公共管理高层论坛\",\"volume\":\"51 1\",\"pages\":\"693-698\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"公共管理高层论坛\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,航运业一直是影响经济增长的主要因素之一,其数字化有望使船舶控制的安全性和可靠性得到前所未有的提高,从而最终实现船舶的自主操作。船舶的自动化控制不仅可以降低人为失误的风险,还可以通过防止意外延误来提高运营效率,同时保持环境的可持续性。随着船舶互联网(IoS)领域的出现,众所周知和成熟的物联网(IoT)概念正在应用于船舶和港口,从而使它们越来越多地配备传感和通信能力,为提高态势感知和更好的决策奠定基础。然而,还有许多挑战需要深入研究,例如驳船、港口和服务之间的通信,因为卫星通信带来的网络延迟增加和带宽限制可能会带来重大的事故发生风险,最终影响驳船的整体自动化操作/远程操作。在本文中,我们首次尝试测试5G系统自动化驳船操作的潜力,从远程操作作为自动化的推动者开始,从而在现实环境中创建和验证基于蜂窝的自动化驳船控制系统。在该系统中,驳船在安特卫普布鲁日港等繁忙的港口地区航行,同时连接到5G网络。我们评估了5G通信系统的质量,并介绍和讨论了5G可以为驳船控制的远程操作和自动化带来的增强功能的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Assessing the Potential of 5G and beyond for Enhancing Automated Barge Control
As the shipping sector has been one of the major impact factors on economic growth over the past decades, its digitalization is expected to make unprecedented improvements in the safety and reliability of ship control, thereby ultimately enabling the autonomous operations of ships. The automated control of ships will not only mitigate the risks of human mistakes but will also improve the efficiency of operations by preventing unexpected delays while being environmentally sustainable. With the advent of the Internet of Ships (IoS) sector, well-known and mature concepts of the Internet of Things (IoT) are being applied to ships and ports, thereby making them more and more equipped with sensing and communication capabilities that set the ground for improved situational awareness and better decision-making. However, there are many challenges that need to be thoroughly studied, such as the communication between barges, ports, and services, as increased network latency and limitations on the bandwidth imposed by satellite communications could introduce significant risks for accident occurrence, ultimately affecting the overall automated operation/teleoperation of barges. In this paper, we present one of the first attempts to test the potential of 5G systems for automating barge operations, starting from teleoperation as an enabler of automation, thereby creating and validating a cellular-based automated barge control system in a real-life environment. In this system, the barge is sailing in a busy port area such as one of the Port of Antwerp Bruges, while being connected to the 5G network. We assess the quality of the 5G communication system and present and discuss our initial results on the enhancements that 5G could bring to teleoperation and automation of the barge control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
385
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信