虚幂级数的最小模与例外集的h测度

IF 0.5 Q3 MATHEMATICS
Salo Tetyana Mykhailivna, Skaskiv Oleh Bohdanovych
{"title":"虚幂级数的最小模与例外集的h测度","authors":"Salo Tetyana Mykhailivna, Skaskiv Oleh Bohdanovych","doi":"10.13108/2017-9-4-135","DOIUrl":null,"url":null,"abstract":"We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let f(z) = ∑︀+∞ k=0 fkz nk , where (nk) is a strictly increasing sequence of non-negative integers. We denote by Mf (r) = max{|f(z)| : |z| = r}, mf (r) = min{|f(z)| : |z| = r}, μf (r) = max{|fk|rk : k > 0} the maximum modulus, the minimum modulus and the maximum term of f, respectively. Let h(r) be a positive continuous function increasing to infinity on [1,+∞) with a nondecreasing derivative. For a measurable set E ⊂ [1,+∞) we introduce h − meas (E) = ∫︀ E dh(r) r . In this paper we establish conditions guaranteeing that the relations Mf (r) = (1 + o(1))mf (r), Mf (r) = (1 + o(1))μf (r) are true as r → +∞ outside some exceptional set E such that h − meas (E) < +∞. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"139 1","pages":"135-144"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minimum modulus of lacunary power series and h-measure of exceptional sets\",\"authors\":\"Salo Tetyana Mykhailivna, Skaskiv Oleh Bohdanovych\",\"doi\":\"10.13108/2017-9-4-135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let f(z) = ∑︀+∞ k=0 fkz nk , where (nk) is a strictly increasing sequence of non-negative integers. We denote by Mf (r) = max{|f(z)| : |z| = r}, mf (r) = min{|f(z)| : |z| = r}, μf (r) = max{|fk|rk : k > 0} the maximum modulus, the minimum modulus and the maximum term of f, respectively. Let h(r) be a positive continuous function increasing to infinity on [1,+∞) with a nondecreasing derivative. For a measurable set E ⊂ [1,+∞) we introduce h − meas (E) = ∫︀ E dh(r) r . In this paper we establish conditions guaranteeing that the relations Mf (r) = (1 + o(1))mf (r), Mf (r) = (1 + o(1))μf (r) are true as r → +∞ outside some exceptional set E such that h − meas (E) < +∞. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"139 1\",\"pages\":\"135-144\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-4-135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-4-135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑了用虚幂级数表示的整个函数的芬顿定理的一些推广。设f(z) =∑︀+∞k=0 fkz nk,其中(nk)是一个严格递增的非负整数序列。我们分别用Mf (r) = max{|f(z)|: |z| = r}, Mf (r) = min{|f(z)|: |z| = r}, μf (r) = max{|fk|rk: k > 0}表示f的最大模,最小模和最大项。设h(r)是一个正的连续函数,在[1,+∞)上递增到无穷,导数是非递减的。对于可测集合E∧[1,+∞),引入h−meas (E) =∫︀E dh(r) r。本文建立了在例外集E外,当r→+∞使得h−= (E) < +∞时,Mf (r) = (1 + o(1)) Mf (r), Mf (r) = (1 + o(1))μf (r)成立的条件。对于某些子类,我们得到了充分必要条件。对于整个狄利克雷级数,我们也给出了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum modulus of lacunary power series and h-measure of exceptional sets
We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let f(z) = ∑︀+∞ k=0 fkz nk , where (nk) is a strictly increasing sequence of non-negative integers. We denote by Mf (r) = max{|f(z)| : |z| = r}, mf (r) = min{|f(z)| : |z| = r}, μf (r) = max{|fk|rk : k > 0} the maximum modulus, the minimum modulus and the maximum term of f, respectively. Let h(r) be a positive continuous function increasing to infinity on [1,+∞) with a nondecreasing derivative. For a measurable set E ⊂ [1,+∞) we introduce h − meas (E) = ∫︀ E dh(r) r . In this paper we establish conditions guaranteeing that the relations Mf (r) = (1 + o(1))mf (r), Mf (r) = (1 + o(1))μf (r) are true as r → +∞ outside some exceptional set E such that h − meas (E) < +∞. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信