Salo Tetyana Mykhailivna, Skaskiv Oleh Bohdanovych
{"title":"虚幂级数的最小模与例外集的h测度","authors":"Salo Tetyana Mykhailivna, Skaskiv Oleh Bohdanovych","doi":"10.13108/2017-9-4-135","DOIUrl":null,"url":null,"abstract":"We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let f(z) = ∑︀+∞ k=0 fkz nk , where (nk) is a strictly increasing sequence of non-negative integers. We denote by Mf (r) = max{|f(z)| : |z| = r}, mf (r) = min{|f(z)| : |z| = r}, μf (r) = max{|fk|rk : k > 0} the maximum modulus, the minimum modulus and the maximum term of f, respectively. Let h(r) be a positive continuous function increasing to infinity on [1,+∞) with a nondecreasing derivative. For a measurable set E ⊂ [1,+∞) we introduce h − meas (E) = ∫︀ E dh(r) r . In this paper we establish conditions guaranteeing that the relations Mf (r) = (1 + o(1))mf (r), Mf (r) = (1 + o(1))μf (r) are true as r → +∞ outside some exceptional set E such that h − meas (E) < +∞. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"139 1","pages":"135-144"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minimum modulus of lacunary power series and h-measure of exceptional sets\",\"authors\":\"Salo Tetyana Mykhailivna, Skaskiv Oleh Bohdanovych\",\"doi\":\"10.13108/2017-9-4-135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let f(z) = ∑︀+∞ k=0 fkz nk , where (nk) is a strictly increasing sequence of non-negative integers. We denote by Mf (r) = max{|f(z)| : |z| = r}, mf (r) = min{|f(z)| : |z| = r}, μf (r) = max{|fk|rk : k > 0} the maximum modulus, the minimum modulus and the maximum term of f, respectively. Let h(r) be a positive continuous function increasing to infinity on [1,+∞) with a nondecreasing derivative. For a measurable set E ⊂ [1,+∞) we introduce h − meas (E) = ∫︀ E dh(r) r . In this paper we establish conditions guaranteeing that the relations Mf (r) = (1 + o(1))mf (r), Mf (r) = (1 + o(1))μf (r) are true as r → +∞ outside some exceptional set E such that h − meas (E) < +∞. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"139 1\",\"pages\":\"135-144\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-4-135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-4-135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Minimum modulus of lacunary power series and h-measure of exceptional sets
We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let f(z) = ∑︀+∞ k=0 fkz nk , where (nk) is a strictly increasing sequence of non-negative integers. We denote by Mf (r) = max{|f(z)| : |z| = r}, mf (r) = min{|f(z)| : |z| = r}, μf (r) = max{|fk|rk : k > 0} the maximum modulus, the minimum modulus and the maximum term of f, respectively. Let h(r) be a positive continuous function increasing to infinity on [1,+∞) with a nondecreasing derivative. For a measurable set E ⊂ [1,+∞) we introduce h − meas (E) = ∫︀ E dh(r) r . In this paper we establish conditions guaranteeing that the relations Mf (r) = (1 + o(1))mf (r), Mf (r) = (1 + o(1))μf (r) are true as r → +∞ outside some exceptional set E such that h − meas (E) < +∞. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.