高阶逆数学中的巴拿赫定理

IF 0.3 Q4 MATHEMATICS, APPLIED
J. Hirst, Carl Mummert
{"title":"高阶逆数学中的巴拿赫定理","authors":"J. Hirst, Carl Mummert","doi":"10.3233/com-230453","DOIUrl":null,"url":null,"abstract":"In this paper, methods of second-order and higher-order reverse mathematics are applied to versions of a theorem of Banach that extends the Schröder–Bernstein theorem. Some additional results address statements in higher-order arithmetic formalizing the uncountability of the power set of the natural numbers. In general, the formalizations of higher-order principles here have a Skolemized form asserting the existence of functionals that solve problems uniformly. This facilitates proofs of reversals in axiom systems with restricted choice.","PeriodicalId":42452,"journal":{"name":"Computability-The Journal of the Association CiE","volume":"96 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Banach’s theorem in higher-order reverse mathematics\",\"authors\":\"J. Hirst, Carl Mummert\",\"doi\":\"10.3233/com-230453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, methods of second-order and higher-order reverse mathematics are applied to versions of a theorem of Banach that extends the Schröder–Bernstein theorem. Some additional results address statements in higher-order arithmetic formalizing the uncountability of the power set of the natural numbers. In general, the formalizations of higher-order principles here have a Skolemized form asserting the existence of functionals that solve problems uniformly. This facilitates proofs of reversals in axiom systems with restricted choice.\",\"PeriodicalId\":42452,\"journal\":{\"name\":\"Computability-The Journal of the Association CiE\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computability-The Journal of the Association CiE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/com-230453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computability-The Journal of the Association CiE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/com-230453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将二阶和高阶逆数学的方法应用于Banach定理的一个版本,该版本扩展了Schröder-Bernstein定理。一些附加的结果处理了在高阶算术中形式化自然数幂集不可数的陈述。一般来说,这里的高阶原理的形式化有一种斯科勒米化的形式,断言存在统一解决问题的泛函。这有助于在有限选择的公理系统中证明反转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banach’s theorem in higher-order reverse mathematics
In this paper, methods of second-order and higher-order reverse mathematics are applied to versions of a theorem of Banach that extends the Schröder–Bernstein theorem. Some additional results address statements in higher-order arithmetic formalizing the uncountability of the power set of the natural numbers. In general, the formalizations of higher-order principles here have a Skolemized form asserting the existence of functionals that solve problems uniformly. This facilitates proofs of reversals in axiom systems with restricted choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信