调和测度的统计双曲性

Vaibhav Gadre, Luke Jeffreys
{"title":"调和测度的统计双曲性","authors":"Vaibhav Gadre, Luke Jeffreys","doi":"10.1093/imrn/rnaa277","DOIUrl":null,"url":null,"abstract":"We consider harmonic measures that arise from a finitely supported random walk on the mapping class group whose support generates a non-elementary subgroup. We prove that Teichmuller space with the Teichmuller metric is statistically hyperbolic for such a harmonic measure.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Hyperbolicity for Harmonic Measure\",\"authors\":\"Vaibhav Gadre, Luke Jeffreys\",\"doi\":\"10.1093/imrn/rnaa277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider harmonic measures that arise from a finitely supported random walk on the mapping class group whose support generates a non-elementary subgroup. We prove that Teichmuller space with the Teichmuller metric is statistically hyperbolic for such a harmonic measure.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑映射类群上有限支持随机漫步所产生的调和测度,其支持产生非初等子群。我们证明了具有Teichmuller度量的Teichmuller空间对于这样一个调和测度是统计双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Hyperbolicity for Harmonic Measure
We consider harmonic measures that arise from a finitely supported random walk on the mapping class group whose support generates a non-elementary subgroup. We prove that Teichmuller space with the Teichmuller metric is statistically hyperbolic for such a harmonic measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信