{"title":"量子态的影层析成像","authors":"S. Aaronson","doi":"10.1145/3188745.3188802","DOIUrl":null,"url":null,"abstract":"We introduce the problem of *shadow tomography*: given an unknown D-dimensional quantum mixed state ρ, as well as known two-outcome measurements E1,…,EM, estimate the probability that Ei accepts ρ, to within additive error ε, for each of the M measurements. How many copies of ρ are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O( ε−5·log4 M·logD) copies. This means, for example, that we can learn the behavior of an arbitrary n-qubit state, on *all* accepting/rejecting circuits of some fixed polynomial size, by measuring only nO( 1) copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brandão et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"491 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"280","resultStr":"{\"title\":\"Shadow tomography of quantum states\",\"authors\":\"S. Aaronson\",\"doi\":\"10.1145/3188745.3188802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the problem of *shadow tomography*: given an unknown D-dimensional quantum mixed state ρ, as well as known two-outcome measurements E1,…,EM, estimate the probability that Ei accepts ρ, to within additive error ε, for each of the M measurements. How many copies of ρ are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O( ε−5·log4 M·logD) copies. This means, for example, that we can learn the behavior of an arbitrary n-qubit state, on *all* accepting/rejecting circuits of some fixed polynomial size, by measuring only nO( 1) copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brandão et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"491 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"280\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce the problem of *shadow tomography*: given an unknown D-dimensional quantum mixed state ρ, as well as known two-outcome measurements E1,…,EM, estimate the probability that Ei accepts ρ, to within additive error ε, for each of the M measurements. How many copies of ρ are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O( ε−5·log4 M·logD) copies. This means, for example, that we can learn the behavior of an arbitrary n-qubit state, on *all* accepting/rejecting circuits of some fixed polynomial size, by measuring only nO( 1) copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brandão et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.