奇摄动积分-微分系统中快速振荡非均匀性对附加边界层形成的影响

M. Akylbayev, Burhan Kali̇mbetov, N. Pardaeva
{"title":"奇摄动积分-微分系统中快速振荡非均匀性对附加边界层形成的影响","authors":"M. Akylbayev, Burhan Kali̇mbetov, N. Pardaeva","doi":"10.31197/atnaa.1264072","DOIUrl":null,"url":null,"abstract":"In this paper, the Lomov's regularization method is generalized to a singularly perturbed integro-differential equation with a fractional derivative and with a rapidly oscillating inhomogeneity. The main goal of the work is to reveal the influence of a rapidly changing kernel on the structure of the asymptotics of the problem solution and to study additional boundary functions that are generated by rapidly oscillating inhomogeneities.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of rapidly oscillating inhomogeneities in the formation of additional boundary layers for singularly perturbed integro-differential systems\",\"authors\":\"M. Akylbayev, Burhan Kali̇mbetov, N. Pardaeva\",\"doi\":\"10.31197/atnaa.1264072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Lomov's regularization method is generalized to a singularly perturbed integro-differential equation with a fractional derivative and with a rapidly oscillating inhomogeneity. The main goal of the work is to reveal the influence of a rapidly changing kernel on the structure of the asymptotics of the problem solution and to study additional boundary functions that are generated by rapidly oscillating inhomogeneities.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1264072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1264072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将Lomov正则化方法推广到具有分数阶导数和快速振荡非齐次性的奇摄动积分微分方程。这项工作的主要目标是揭示快速变化的核对问题解的渐近结构的影响,并研究由快速振荡非齐次性产生的附加边界函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of rapidly oscillating inhomogeneities in the formation of additional boundary layers for singularly perturbed integro-differential systems
In this paper, the Lomov's regularization method is generalized to a singularly perturbed integro-differential equation with a fractional derivative and with a rapidly oscillating inhomogeneity. The main goal of the work is to reveal the influence of a rapidly changing kernel on the structure of the asymptotics of the problem solution and to study additional boundary functions that are generated by rapidly oscillating inhomogeneities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信