{"title":"使用非配对图像到图像转换网络的偏差校正气候模型模拟","authors":"D. J. Fulton, Ben J. Clarke, G. Hegerl","doi":"10.1175/aies-d-22-0031.1","DOIUrl":null,"url":null,"abstract":"\nWe assess the suitability of unpaired image-to-image translation networks for bias correcting data simulated by global atmospheric circulation models. We use the UNIT neural network architecture to map between data from the HadGEM3-A-N216 model and ERA5 reanalysis data in a geographical area centred on the South Asian monsoon, which has well-documented serious biases in this model. The UNIT network corrects cross-variable correlations and spatial structures but creates bias corrections with less extreme values than the target distribution. By combining the UNIT neural network with the classical technique of quantile mapping, we can produce bias corrections that are better than either alone. The UNIT+QM scheme is shown to correct cross-variable correlations, spatial patterns, and all marginal distributions of single variables. The careful correction of such joint distributions is of high importance for compound extremes research.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bias correcting climate model simulations using unpaired image-to-image translation networks\",\"authors\":\"D. J. Fulton, Ben J. Clarke, G. Hegerl\",\"doi\":\"10.1175/aies-d-22-0031.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe assess the suitability of unpaired image-to-image translation networks for bias correcting data simulated by global atmospheric circulation models. We use the UNIT neural network architecture to map between data from the HadGEM3-A-N216 model and ERA5 reanalysis data in a geographical area centred on the South Asian monsoon, which has well-documented serious biases in this model. The UNIT network corrects cross-variable correlations and spatial structures but creates bias corrections with less extreme values than the target distribution. By combining the UNIT neural network with the classical technique of quantile mapping, we can produce bias corrections that are better than either alone. The UNIT+QM scheme is shown to correct cross-variable correlations, spatial patterns, and all marginal distributions of single variables. The careful correction of such joint distributions is of high importance for compound extremes research.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0031.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0031.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bias correcting climate model simulations using unpaired image-to-image translation networks
We assess the suitability of unpaired image-to-image translation networks for bias correcting data simulated by global atmospheric circulation models. We use the UNIT neural network architecture to map between data from the HadGEM3-A-N216 model and ERA5 reanalysis data in a geographical area centred on the South Asian monsoon, which has well-documented serious biases in this model. The UNIT network corrects cross-variable correlations and spatial structures but creates bias corrections with less extreme values than the target distribution. By combining the UNIT neural network with the classical technique of quantile mapping, we can produce bias corrections that are better than either alone. The UNIT+QM scheme is shown to correct cross-variable correlations, spatial patterns, and all marginal distributions of single variables. The careful correction of such joint distributions is of high importance for compound extremes research.