Maciej Augustyniak, A. Badescu, Jean‐François Bégin
{"title":"具有多因素和肥尾的离散时间套期保值框架:关于什么重要","authors":"Maciej Augustyniak, A. Badescu, Jean‐François Bégin","doi":"10.2139/ssrn.3728995","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a quadratic hedging framework for a general class of discrete-time affine multi-factor models and investigates the extent to which multi-component volatility factors, fat tails, and a non-monotonic pricing kernel can improve the hedging performance. A semi-explicit hedging formula is derived for our general framework which applies to a myriad of the option pricing models proposed in the discrete-time literature. We conduct an extensive empirical study of the impact of modelling features on the hedging effectiveness of S&P 500 options. Overall, we find that fat tails can be credited for half of the hedging improvement observed, while a second volatility factor and a non-monotonic pricing kernel each contribute to a quarter of this improvement. Moreover, our study indicates that the added value of these features for hedging is different than for pricing. A robustness analysis shows that a similar conclusion can be reached when considering the Dow Jones Industrial Average. Finally, the use of a hedging-based loss function in the estimation process is investigated in an additional robustness test, and this choice has a rather marginal impact on hedging performance.","PeriodicalId":18891,"journal":{"name":"Mutual Funds","volume":"368 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Discrete-Time Hedging Framework with Multiple Factors and Fat Tails: On What Matters\",\"authors\":\"Maciej Augustyniak, A. Badescu, Jean‐François Bégin\",\"doi\":\"10.2139/ssrn.3728995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a quadratic hedging framework for a general class of discrete-time affine multi-factor models and investigates the extent to which multi-component volatility factors, fat tails, and a non-monotonic pricing kernel can improve the hedging performance. A semi-explicit hedging formula is derived for our general framework which applies to a myriad of the option pricing models proposed in the discrete-time literature. We conduct an extensive empirical study of the impact of modelling features on the hedging effectiveness of S&P 500 options. Overall, we find that fat tails can be credited for half of the hedging improvement observed, while a second volatility factor and a non-monotonic pricing kernel each contribute to a quarter of this improvement. Moreover, our study indicates that the added value of these features for hedging is different than for pricing. A robustness analysis shows that a similar conclusion can be reached when considering the Dow Jones Industrial Average. Finally, the use of a hedging-based loss function in the estimation process is investigated in an additional robustness test, and this choice has a rather marginal impact on hedging performance.\",\"PeriodicalId\":18891,\"journal\":{\"name\":\"Mutual Funds\",\"volume\":\"368 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutual Funds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3728995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutual Funds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3728995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Discrete-Time Hedging Framework with Multiple Factors and Fat Tails: On What Matters
Abstract This article presents a quadratic hedging framework for a general class of discrete-time affine multi-factor models and investigates the extent to which multi-component volatility factors, fat tails, and a non-monotonic pricing kernel can improve the hedging performance. A semi-explicit hedging formula is derived for our general framework which applies to a myriad of the option pricing models proposed in the discrete-time literature. We conduct an extensive empirical study of the impact of modelling features on the hedging effectiveness of S&P 500 options. Overall, we find that fat tails can be credited for half of the hedging improvement observed, while a second volatility factor and a non-monotonic pricing kernel each contribute to a quarter of this improvement. Moreover, our study indicates that the added value of these features for hedging is different than for pricing. A robustness analysis shows that a similar conclusion can be reached when considering the Dow Jones Industrial Average. Finally, the use of a hedging-based loss function in the estimation process is investigated in an additional robustness test, and this choice has a rather marginal impact on hedging performance.