高性能64b静态加法器在能量延迟空间的布局后比较

Sheng Sun, C. Sechen
{"title":"高性能64b静态加法器在能量延迟空间的布局后比较","authors":"Sheng Sun, C. Sechen","doi":"10.1109/ICCD.2007.4601931","DOIUrl":null,"url":null,"abstract":"Our objective was to determine the most energy efficient 64 b static CMOS adder architecture, for a range of high-performance delay targets. We examine extensively carry-lookahead (CLA) and carry-select adders with a wide range of tradeoffs in logic levels, fanouts and wiring complexity. We propose sparse CLA adder architectures based on buffering techniques to reduce logic redundancy and improve energy efficiency. All the designs were implemented using an energy-delay layout optimization flow with full RC extraction. Our new 64 b adder designs have a relative delay as low as 9.9 F04 (fanout-offour inverter) delays and promise better scaling for smaller technology nodes. They yield the best energy efficiency for a wide range of delay targets and are 30%, 15% and 7% more energy efficient than full Kogge-Stone, sparse-2 Kogge-Stone and Han-Carlson, respectively, at the fastest points. They consume only about 1/3 the energy of dynamic adders.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"8 1","pages":"401-408"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Post-layout comparison of high performance 64b static adders in energy-delay space\",\"authors\":\"Sheng Sun, C. Sechen\",\"doi\":\"10.1109/ICCD.2007.4601931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our objective was to determine the most energy efficient 64 b static CMOS adder architecture, for a range of high-performance delay targets. We examine extensively carry-lookahead (CLA) and carry-select adders with a wide range of tradeoffs in logic levels, fanouts and wiring complexity. We propose sparse CLA adder architectures based on buffering techniques to reduce logic redundancy and improve energy efficiency. All the designs were implemented using an energy-delay layout optimization flow with full RC extraction. Our new 64 b adder designs have a relative delay as low as 9.9 F04 (fanout-offour inverter) delays and promise better scaling for smaller technology nodes. They yield the best energy efficiency for a wide range of delay targets and are 30%, 15% and 7% more energy efficient than full Kogge-Stone, sparse-2 Kogge-Stone and Han-Carlson, respectively, at the fastest points. They consume only about 1/3 the energy of dynamic adders.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"8 1\",\"pages\":\"401-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们的目标是确定最节能的64 b静态CMOS加法器架构,用于一系列高性能延迟目标。我们广泛地研究了超前进位(CLA)和进位选择加法器,在逻辑电平、扇出和布线复杂性方面进行了广泛的权衡。我们提出了基于缓冲技术的稀疏CLA加法器架构,以减少逻辑冗余并提高能源效率。所有的设计都是使用全RC提取的能量延迟布局优化流程来实现的。我们新的64 b加法器设计的相对延迟低至9.9 F04(四扇输出逆变器)延迟,并承诺为更小的技术节点提供更好的缩放。对于大范围的延迟目标,它们产生了最佳的能源效率,在最快的点上,它们的能源效率分别比全Kogge-Stone、稀疏-2 Kogge-Stone和汉-卡尔森高30%、15%和7%。它们消耗的能量只有动态加法器的1/3左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Post-layout comparison of high performance 64b static adders in energy-delay space
Our objective was to determine the most energy efficient 64 b static CMOS adder architecture, for a range of high-performance delay targets. We examine extensively carry-lookahead (CLA) and carry-select adders with a wide range of tradeoffs in logic levels, fanouts and wiring complexity. We propose sparse CLA adder architectures based on buffering techniques to reduce logic redundancy and improve energy efficiency. All the designs were implemented using an energy-delay layout optimization flow with full RC extraction. Our new 64 b adder designs have a relative delay as low as 9.9 F04 (fanout-offour inverter) delays and promise better scaling for smaller technology nodes. They yield the best energy efficiency for a wide range of delay targets and are 30%, 15% and 7% more energy efficient than full Kogge-Stone, sparse-2 Kogge-Stone and Han-Carlson, respectively, at the fastest points. They consume only about 1/3 the energy of dynamic adders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信