Злата Кибалко, Олександр Олегович Пришляк, Roman Shchurko
{"title":"封闭表面上最优莫尔斯流的轨迹等价","authors":"Злата Кибалко, Олександр Олегович Пришляк, Roman Shchurko","doi":"10.15673/TMGC.V11I1.916","DOIUrl":null,"url":null,"abstract":"We consider optimal Morse flows on closed surfaces. Up to topological trajectory equivalence such flows are determined by marked chord diagrams. We present list all such diagrams for flows on nonorientable surfaces of genus at most 4 and indicate pairs of diagrams corresponding to the flows and their inverses.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"719 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Trajectory equivalence of optimal Morse flows on closed surfaces\",\"authors\":\"Злата Кибалко, Олександр Олегович Пришляк, Roman Shchurko\",\"doi\":\"10.15673/TMGC.V11I1.916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider optimal Morse flows on closed surfaces. Up to topological trajectory equivalence such flows are determined by marked chord diagrams. We present list all such diagrams for flows on nonorientable surfaces of genus at most 4 and indicate pairs of diagrams corresponding to the flows and their inverses.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"719 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V11I1.916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V11I1.916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Trajectory equivalence of optimal Morse flows on closed surfaces
We consider optimal Morse flows on closed surfaces. Up to topological trajectory equivalence such flows are determined by marked chord diagrams. We present list all such diagrams for flows on nonorientable surfaces of genus at most 4 and indicate pairs of diagrams corresponding to the flows and their inverses.