时频主成分分析在文本无关说话人识别中的应用

I. Magrin-Chagnolleau, G. Durou, F. Bimbot
{"title":"时频主成分分析在文本无关说话人识别中的应用","authors":"I. Magrin-Chagnolleau, G. Durou, F. Bimbot","doi":"10.1109/TSA.2002.800557","DOIUrl":null,"url":null,"abstract":"We propose a formalism, called vector filtering of spectral trajectories, that allows the integration of a number of speech parameterization approaches (cepstral analysis, /spl Delta/ and /spl Delta//spl Delta/ parameterizations, auto-regressive vector modeling, ...) under a common formalism. We then propose a new filtering, called contextual principal components (CPC) or time-frequency principal components (TFPC). This filtering consists in extracting the principal components of the contextual covariance matrix, which is the covariance matrix of a sequence of vectors expanded by their context. We apply this new filtering in the framework of closed-set speaker identification, using a subset of the POLYCOST database. When using speaker-dependent TFPC filters, our results show a relative improvement of approximately 20% compared to the use of the classical cepstral coefficients augmented by their /spl Delta/-coefficients, which is significantly better with a 90% confidence level.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"206 1","pages":"371-378"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Application of time-frequency principal component analysis to text-independent speaker identification\",\"authors\":\"I. Magrin-Chagnolleau, G. Durou, F. Bimbot\",\"doi\":\"10.1109/TSA.2002.800557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a formalism, called vector filtering of spectral trajectories, that allows the integration of a number of speech parameterization approaches (cepstral analysis, /spl Delta/ and /spl Delta//spl Delta/ parameterizations, auto-regressive vector modeling, ...) under a common formalism. We then propose a new filtering, called contextual principal components (CPC) or time-frequency principal components (TFPC). This filtering consists in extracting the principal components of the contextual covariance matrix, which is the covariance matrix of a sequence of vectors expanded by their context. We apply this new filtering in the framework of closed-set speaker identification, using a subset of the POLYCOST database. When using speaker-dependent TFPC filters, our results show a relative improvement of approximately 20% compared to the use of the classical cepstral coefficients augmented by their /spl Delta/-coefficients, which is significantly better with a 90% confidence level.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"206 1\",\"pages\":\"371-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2002.800557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2002.800557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一种形式,称为频谱轨迹的矢量滤波,它允许在一个共同的形式下集成许多语音参数化方法(倒谱分析,/spl Delta/和/spl Delta//spl Delta/参数化,自回归向量建模等)。然后,我们提出了一种新的滤波方法,称为上下文主成分(CPC)或时频主成分(TFPC)。该滤波包括提取上下文协方差矩阵的主成分,该协方差矩阵是由其上下文展开的向量序列的协方差矩阵。我们使用POLYCOST数据库的一个子集,在闭集说话人识别的框架中应用这种新的滤波。当使用依赖于扬声器的TFPC滤波器时,我们的结果显示,与使用经典的倒谱系数增加它们的/spl δ /-系数相比,大约有20%的相对改进,这在90%的置信水平下明显更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of time-frequency principal component analysis to text-independent speaker identification
We propose a formalism, called vector filtering of spectral trajectories, that allows the integration of a number of speech parameterization approaches (cepstral analysis, /spl Delta/ and /spl Delta//spl Delta/ parameterizations, auto-regressive vector modeling, ...) under a common formalism. We then propose a new filtering, called contextual principal components (CPC) or time-frequency principal components (TFPC). This filtering consists in extracting the principal components of the contextual covariance matrix, which is the covariance matrix of a sequence of vectors expanded by their context. We apply this new filtering in the framework of closed-set speaker identification, using a subset of the POLYCOST database. When using speaker-dependent TFPC filters, our results show a relative improvement of approximately 20% compared to the use of the classical cepstral coefficients augmented by their /spl Delta/-coefficients, which is significantly better with a 90% confidence level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信