{"title":"时频主成分分析在文本无关说话人识别中的应用","authors":"I. Magrin-Chagnolleau, G. Durou, F. Bimbot","doi":"10.1109/TSA.2002.800557","DOIUrl":null,"url":null,"abstract":"We propose a formalism, called vector filtering of spectral trajectories, that allows the integration of a number of speech parameterization approaches (cepstral analysis, /spl Delta/ and /spl Delta//spl Delta/ parameterizations, auto-regressive vector modeling, ...) under a common formalism. We then propose a new filtering, called contextual principal components (CPC) or time-frequency principal components (TFPC). This filtering consists in extracting the principal components of the contextual covariance matrix, which is the covariance matrix of a sequence of vectors expanded by their context. We apply this new filtering in the framework of closed-set speaker identification, using a subset of the POLYCOST database. When using speaker-dependent TFPC filters, our results show a relative improvement of approximately 20% compared to the use of the classical cepstral coefficients augmented by their /spl Delta/-coefficients, which is significantly better with a 90% confidence level.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"206 1","pages":"371-378"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Application of time-frequency principal component analysis to text-independent speaker identification\",\"authors\":\"I. Magrin-Chagnolleau, G. Durou, F. Bimbot\",\"doi\":\"10.1109/TSA.2002.800557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a formalism, called vector filtering of spectral trajectories, that allows the integration of a number of speech parameterization approaches (cepstral analysis, /spl Delta/ and /spl Delta//spl Delta/ parameterizations, auto-regressive vector modeling, ...) under a common formalism. We then propose a new filtering, called contextual principal components (CPC) or time-frequency principal components (TFPC). This filtering consists in extracting the principal components of the contextual covariance matrix, which is the covariance matrix of a sequence of vectors expanded by their context. We apply this new filtering in the framework of closed-set speaker identification, using a subset of the POLYCOST database. When using speaker-dependent TFPC filters, our results show a relative improvement of approximately 20% compared to the use of the classical cepstral coefficients augmented by their /spl Delta/-coefficients, which is significantly better with a 90% confidence level.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"206 1\",\"pages\":\"371-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2002.800557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2002.800557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of time-frequency principal component analysis to text-independent speaker identification
We propose a formalism, called vector filtering of spectral trajectories, that allows the integration of a number of speech parameterization approaches (cepstral analysis, /spl Delta/ and /spl Delta//spl Delta/ parameterizations, auto-regressive vector modeling, ...) under a common formalism. We then propose a new filtering, called contextual principal components (CPC) or time-frequency principal components (TFPC). This filtering consists in extracting the principal components of the contextual covariance matrix, which is the covariance matrix of a sequence of vectors expanded by their context. We apply this new filtering in the framework of closed-set speaker identification, using a subset of the POLYCOST database. When using speaker-dependent TFPC filters, our results show a relative improvement of approximately 20% compared to the use of the classical cepstral coefficients augmented by their /spl Delta/-coefficients, which is significantly better with a 90% confidence level.