{"title":"泥炭和木基保温材料生产技术的发展","authors":"T. Vasiljeva, A. Korjakins","doi":"10.2478/cons-2017-0009","DOIUrl":null,"url":null,"abstract":"Abstract The article presents research results on a thermal insulation material made of low-moor peat. A model based on three components, including peat binder, frame component (wooden aggregate) and additives, was developed in the framework of this study. The conducted research showed that by grinding low-moor peat in water until the particle size is 2–5 mkm increased peat cohesion strength with wooden aggregate 2.5 to 2.7 times as well as increased the compressive strength of peat binder 5.0 to 5.5 times. Optimal parameters of strength and density in the wood peat composition with discontinuous granulometry wooden aggregate were achieved by using two fraction wood filler with fractions 2.5 mm ... 1.25 mm and 0.63 mm ... 0.315 mm in the proportion 50:50 and 60:40. Introducing anionic surfactants and foam forming non-ionic surfactants with neutral reaction against the surface of the peat and wood filler allows to reduce the average density up to 210–220 kg/m3, thus maintaining the required strength, and to reduce the coefficient of thermal conduction to 0.046 W/mK.","PeriodicalId":22024,"journal":{"name":"Stroitel stvo nauka i obrazovanie [Construction Science and Education]","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Development of Peat and Wood-Based Thermal Insulation Material Production Technology\",\"authors\":\"T. Vasiljeva, A. Korjakins\",\"doi\":\"10.2478/cons-2017-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article presents research results on a thermal insulation material made of low-moor peat. A model based on three components, including peat binder, frame component (wooden aggregate) and additives, was developed in the framework of this study. The conducted research showed that by grinding low-moor peat in water until the particle size is 2–5 mkm increased peat cohesion strength with wooden aggregate 2.5 to 2.7 times as well as increased the compressive strength of peat binder 5.0 to 5.5 times. Optimal parameters of strength and density in the wood peat composition with discontinuous granulometry wooden aggregate were achieved by using two fraction wood filler with fractions 2.5 mm ... 1.25 mm and 0.63 mm ... 0.315 mm in the proportion 50:50 and 60:40. Introducing anionic surfactants and foam forming non-ionic surfactants with neutral reaction against the surface of the peat and wood filler allows to reduce the average density up to 210–220 kg/m3, thus maintaining the required strength, and to reduce the coefficient of thermal conduction to 0.046 W/mK.\",\"PeriodicalId\":22024,\"journal\":{\"name\":\"Stroitel stvo nauka i obrazovanie [Construction Science and Education]\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stroitel stvo nauka i obrazovanie [Construction Science and Education]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cons-2017-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroitel stvo nauka i obrazovanie [Construction Science and Education]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cons-2017-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Development of Peat and Wood-Based Thermal Insulation Material Production Technology
Abstract The article presents research results on a thermal insulation material made of low-moor peat. A model based on three components, including peat binder, frame component (wooden aggregate) and additives, was developed in the framework of this study. The conducted research showed that by grinding low-moor peat in water until the particle size is 2–5 mkm increased peat cohesion strength with wooden aggregate 2.5 to 2.7 times as well as increased the compressive strength of peat binder 5.0 to 5.5 times. Optimal parameters of strength and density in the wood peat composition with discontinuous granulometry wooden aggregate were achieved by using two fraction wood filler with fractions 2.5 mm ... 1.25 mm and 0.63 mm ... 0.315 mm in the proportion 50:50 and 60:40. Introducing anionic surfactants and foam forming non-ionic surfactants with neutral reaction against the surface of the peat and wood filler allows to reduce the average density up to 210–220 kg/m3, thus maintaining the required strength, and to reduce the coefficient of thermal conduction to 0.046 W/mK.