{"title":"广义Zygmund空间中函数的收敛度","authors":"H. K. Nigam, M. Mursaleen, M. Sah","doi":"10.3934/mfc.2022029","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we obtain the results on the degree of convergence of a function of Fourier series in generalized Zygmund space using deferred Cesàro-generalized Nörlund <inline-formula><tex-math id=\"M1\">\\begin{document}$ (D^{h}_{g}N^{a,b}) $\\end{document}</tex-math></inline-formula> transformation. Important corollaries are deduced from our main results. Some applications are also given in support of our main results.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree of convergence of a function in generalized Zygmund space\",\"authors\":\"H. K. Nigam, M. Mursaleen, M. Sah\",\"doi\":\"10.3934/mfc.2022029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we obtain the results on the degree of convergence of a function of Fourier series in generalized Zygmund space using deferred Cesàro-generalized Nörlund <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ (D^{h}_{g}N^{a,b}) $\\\\end{document}</tex-math></inline-formula> transformation. Important corollaries are deduced from our main results. Some applications are also given in support of our main results.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
In this paper, we obtain the results on the degree of convergence of a function of Fourier series in generalized Zygmund space using deferred Cesàro-generalized Nörlund \begin{document}$ (D^{h}_{g}N^{a,b}) $\end{document} transformation. Important corollaries are deduced from our main results. Some applications are also given in support of our main results.
Degree of convergence of a function in generalized Zygmund space
In this paper, we obtain the results on the degree of convergence of a function of Fourier series in generalized Zygmund space using deferred Cesàro-generalized Nörlund \begin{document}$ (D^{h}_{g}N^{a,b}) $\end{document} transformation. Important corollaries are deduced from our main results. Some applications are also given in support of our main results.