Bhumi Javia, Megha S. Gadhvi, S. Vyas, P. Dudhagara, D. Shyu, Yih-Yuan Chen, Dushyant Dudhagara
{"title":"从农业工业废弃物中提取的耐热型l -蛋氨酸酶的生物勘探","authors":"Bhumi Javia, Megha S. Gadhvi, S. Vyas, P. Dudhagara, D. Shyu, Yih-Yuan Chen, Dushyant Dudhagara","doi":"10.3390/microbiolres14030066","DOIUrl":null,"url":null,"abstract":"L-methioninase is an enzyme that has recently gained significant interest in the scientific community because of its potential as a targeted therapy for cancer. This study aims to isolate and identify extremophilic bacteria that could produce L-methioninase and to access the enzymatic potential of isolated bacteria under stress conditions, specifically in agro-industrial waste. In this study, a rare marine bacterium, Alcaligenes aquatilis BJ-1, exhibited the highest specific activity of 4.61 U/mg at an optimum pH of 8.3. The L-methioninase was purified 4.3-fold and 7.15-fold by acetone precipitation and Sephadex G-100 gel filtration chromatography, which revealed a molecular weight of 46 kDa. In addition, agriculture waste materials such as cottonseed oil cake had the highest L-methioninase production. Moreover, A. aquatilis BJ-1 can tolerate and produce enzymes in the presence of 10% NaCl, 6% KCl, and 4% MgSO4. Similarly, substrates such as L-asparagine, L-glutamine, L-alanine, and L-tyrosine were found suitable to increase enzyme production. The strain produced L-methioninase in the presence of various heavy metals. Maximum enzyme activity was found in Zn2+ at 0.1% (2.52 U/mL), Li2+ at 0.03% (2.90 U/mL), and Ni2+ at 0.01% (2.78 U/mL), as compared to the control (2.23 U/mL) without metal. Enzyme production was also observed at a high temperature (60 °C), with the produced enzymes possessing antioxidant properties. In addition, no hemolytic activity was observed. The results indicate that A. aquatilis BJ-1 is an appropriate bacterium for metal bioremediation procedures in unfavorable circumstances.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"58 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bioprospecting of a Thermostable L-Methioninase from Alcaligenes aquatilis BJ-1 in Agro-Industrial Waste\",\"authors\":\"Bhumi Javia, Megha S. Gadhvi, S. Vyas, P. Dudhagara, D. Shyu, Yih-Yuan Chen, Dushyant Dudhagara\",\"doi\":\"10.3390/microbiolres14030066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"L-methioninase is an enzyme that has recently gained significant interest in the scientific community because of its potential as a targeted therapy for cancer. This study aims to isolate and identify extremophilic bacteria that could produce L-methioninase and to access the enzymatic potential of isolated bacteria under stress conditions, specifically in agro-industrial waste. In this study, a rare marine bacterium, Alcaligenes aquatilis BJ-1, exhibited the highest specific activity of 4.61 U/mg at an optimum pH of 8.3. The L-methioninase was purified 4.3-fold and 7.15-fold by acetone precipitation and Sephadex G-100 gel filtration chromatography, which revealed a molecular weight of 46 kDa. In addition, agriculture waste materials such as cottonseed oil cake had the highest L-methioninase production. Moreover, A. aquatilis BJ-1 can tolerate and produce enzymes in the presence of 10% NaCl, 6% KCl, and 4% MgSO4. Similarly, substrates such as L-asparagine, L-glutamine, L-alanine, and L-tyrosine were found suitable to increase enzyme production. The strain produced L-methioninase in the presence of various heavy metals. Maximum enzyme activity was found in Zn2+ at 0.1% (2.52 U/mL), Li2+ at 0.03% (2.90 U/mL), and Ni2+ at 0.01% (2.78 U/mL), as compared to the control (2.23 U/mL) without metal. Enzyme production was also observed at a high temperature (60 °C), with the produced enzymes possessing antioxidant properties. In addition, no hemolytic activity was observed. The results indicate that A. aquatilis BJ-1 is an appropriate bacterium for metal bioremediation procedures in unfavorable circumstances.\",\"PeriodicalId\":43788,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres14030066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14030066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Bioprospecting of a Thermostable L-Methioninase from Alcaligenes aquatilis BJ-1 in Agro-Industrial Waste
L-methioninase is an enzyme that has recently gained significant interest in the scientific community because of its potential as a targeted therapy for cancer. This study aims to isolate and identify extremophilic bacteria that could produce L-methioninase and to access the enzymatic potential of isolated bacteria under stress conditions, specifically in agro-industrial waste. In this study, a rare marine bacterium, Alcaligenes aquatilis BJ-1, exhibited the highest specific activity of 4.61 U/mg at an optimum pH of 8.3. The L-methioninase was purified 4.3-fold and 7.15-fold by acetone precipitation and Sephadex G-100 gel filtration chromatography, which revealed a molecular weight of 46 kDa. In addition, agriculture waste materials such as cottonseed oil cake had the highest L-methioninase production. Moreover, A. aquatilis BJ-1 can tolerate and produce enzymes in the presence of 10% NaCl, 6% KCl, and 4% MgSO4. Similarly, substrates such as L-asparagine, L-glutamine, L-alanine, and L-tyrosine were found suitable to increase enzyme production. The strain produced L-methioninase in the presence of various heavy metals. Maximum enzyme activity was found in Zn2+ at 0.1% (2.52 U/mL), Li2+ at 0.03% (2.90 U/mL), and Ni2+ at 0.01% (2.78 U/mL), as compared to the control (2.23 U/mL) without metal. Enzyme production was also observed at a high temperature (60 °C), with the produced enzymes possessing antioxidant properties. In addition, no hemolytic activity was observed. The results indicate that A. aquatilis BJ-1 is an appropriate bacterium for metal bioremediation procedures in unfavorable circumstances.
期刊介绍:
Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.