基于高斯混合模型的反欺骗系统的深入研究

Bhusan Chettri, Bob L. Sturm
{"title":"基于高斯混合模型的反欺骗系统的深入研究","authors":"Bhusan Chettri, Bob L. Sturm","doi":"10.1109/ICASSP.2018.8461467","DOIUrl":null,"url":null,"abstract":"A “replay attack” involves replaying pre-recorded speech of an enrolled speaker to bypass an automatic speaker verification system. The 2017 ASVspoof Challenge focused on this kind of attack. In this paper, we describe our evaluation work after this challenge. First, we study the effectiveness of Gaussian Mixture Model (GMM) systems using six different hand-crafted features for detecting a replay attack. Second, we take a deeper look at these GMM systems and perform a frame-level analysis of log likelihoods. Our analysis shows how system performance can depend on a simple class-dependent cue in the dataset: initial silence frames of zeros appear in the genuine signals but missing in the spoofed version. Third, we show how we can fool these systems using this cue. For example, we find the equal error rate (EER) of one GMM system dramatically rises from 14.82 to 44.44 when we add the cue to the evaluation data. Finally, we explore whether this problem can be mitigated by pre-processing the 2017 ASV spoof Challenge dataset.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"45 1","pages":"5159-5163"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Deeper Look at Gaussian Mixture Model Based Anti-Spoofing Systems\",\"authors\":\"Bhusan Chettri, Bob L. Sturm\",\"doi\":\"10.1109/ICASSP.2018.8461467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A “replay attack” involves replaying pre-recorded speech of an enrolled speaker to bypass an automatic speaker verification system. The 2017 ASVspoof Challenge focused on this kind of attack. In this paper, we describe our evaluation work after this challenge. First, we study the effectiveness of Gaussian Mixture Model (GMM) systems using six different hand-crafted features for detecting a replay attack. Second, we take a deeper look at these GMM systems and perform a frame-level analysis of log likelihoods. Our analysis shows how system performance can depend on a simple class-dependent cue in the dataset: initial silence frames of zeros appear in the genuine signals but missing in the spoofed version. Third, we show how we can fool these systems using this cue. For example, we find the equal error rate (EER) of one GMM system dramatically rises from 14.82 to 44.44 when we add the cue to the evaluation data. Finally, we explore whether this problem can be mitigated by pre-processing the 2017 ASV spoof Challenge dataset.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"45 1\",\"pages\":\"5159-5163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

“重放攻击”涉及重放预先录制的已注册演讲者的演讲,以绕过自动扬声器验证系统。2017年ASVspoof挑战赛关注的就是这种攻击。在本文中,我们描述了在这一挑战之后我们的评估工作。首先,我们研究了高斯混合模型(GMM)系统使用六种不同的手工特征来检测重放攻击的有效性。其次,我们将更深入地研究这些GMM系统,并对日志可能性执行帧级分析。我们的分析显示了系统性能如何依赖于数据集中一个简单的类相关提示:零的初始沉默帧出现在真实信号中,但在欺骗版本中却没有。第三,我们展示了如何使用这个线索来欺骗这些系统。例如,当我们在评估数据中添加线索时,我们发现一个GMM系统的相等错误率(EER)从14.82急剧上升到44.44。最后,我们探讨了是否可以通过预处理2017年ASV欺骗挑战数据集来缓解这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deeper Look at Gaussian Mixture Model Based Anti-Spoofing Systems
A “replay attack” involves replaying pre-recorded speech of an enrolled speaker to bypass an automatic speaker verification system. The 2017 ASVspoof Challenge focused on this kind of attack. In this paper, we describe our evaluation work after this challenge. First, we study the effectiveness of Gaussian Mixture Model (GMM) systems using six different hand-crafted features for detecting a replay attack. Second, we take a deeper look at these GMM systems and perform a frame-level analysis of log likelihoods. Our analysis shows how system performance can depend on a simple class-dependent cue in the dataset: initial silence frames of zeros appear in the genuine signals but missing in the spoofed version. Third, we show how we can fool these systems using this cue. For example, we find the equal error rate (EER) of one GMM system dramatically rises from 14.82 to 44.44 when we add the cue to the evaluation data. Finally, we explore whether this problem can be mitigated by pre-processing the 2017 ASV spoof Challenge dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信