复利资产破产问题的数学方法

IF 0.3 Q4 MATHEMATICS
M. A. Orukari
{"title":"复利资产破产问题的数学方法","authors":"M. A. Orukari","doi":"10.3844/jmssp.2022.143.147","DOIUrl":null,"url":null,"abstract":": This study considered the Ruin problem with an income process with stationary independent increments. The characterization is obtained which is general for the probability of r ( y ), that the asset of a firm will never be zero whenever the initial asset level of the firm is y . The aim of this study is also to determine r ( y ) = P { T <  | Y (0) = y }, If we let T = inf { t ≥ 0; Y ( t ) < 0}, A condition that is necessary and sufficient is studied for a distribution that is one – dimensional of X n which coverages to X * .The result that is obtained concerning the probability, is of ruin before time t . Riemann-Stieltjes integral, two functions f and  with symbol as ( ) ( ) b a f x d x   was used and is a special case in which  () = x , where  has a continuous derivative. It is defined such that the Stieltjes integral ( ) ( ) b a f x d x   becomes the Riemann integral ( ) ( ) | b a f x x dx   .","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"422 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Approach to the Ruin Problem with Compounding Assets\",\"authors\":\"M. A. Orukari\",\"doi\":\"10.3844/jmssp.2022.143.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This study considered the Ruin problem with an income process with stationary independent increments. The characterization is obtained which is general for the probability of r ( y ), that the asset of a firm will never be zero whenever the initial asset level of the firm is y . The aim of this study is also to determine r ( y ) = P { T <  | Y (0) = y }, If we let T = inf { t ≥ 0; Y ( t ) < 0}, A condition that is necessary and sufficient is studied for a distribution that is one – dimensional of X n which coverages to X * .The result that is obtained concerning the probability, is of ruin before time t . Riemann-Stieltjes integral, two functions f and  with symbol as ( ) ( ) b a f x d x   was used and is a special case in which  () = x , where  has a continuous derivative. It is defined such that the Stieltjes integral ( ) ( ) b a f x d x   becomes the Riemann integral ( ) ( ) | b a f x x dx   .\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"422 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2022.143.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2022.143.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究考虑具有平稳独立增量的收入过程的破产问题。得到了r (y)概率的一般特征,即当企业的初始资产水平为y时,企业的资产永远不会为零。本研究的目的也是确定r (y) = P {T <| y (0) = y},令T = inf {T≥0;Y (t) < 0},研究了覆盖到X *的X n的一维分布的一个充要条件,得到了在时间t之前毁灭的概率的结果。使用Riemann-Stieltjes积分,两个函数f和,符号为()()b a f x d x,并且是()= x的特殊情况,其中具有连续导数。它被定义为Stieltjes积分()()b a f x dx变成了Riemann积分()()| b a f x x dx。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Approach to the Ruin Problem with Compounding Assets
: This study considered the Ruin problem with an income process with stationary independent increments. The characterization is obtained which is general for the probability of r ( y ), that the asset of a firm will never be zero whenever the initial asset level of the firm is y . The aim of this study is also to determine r ( y ) = P { T <  | Y (0) = y }, If we let T = inf { t ≥ 0; Y ( t ) < 0}, A condition that is necessary and sufficient is studied for a distribution that is one – dimensional of X n which coverages to X * .The result that is obtained concerning the probability, is of ruin before time t . Riemann-Stieltjes integral, two functions f and  with symbol as ( ) ( ) b a f x d x   was used and is a special case in which  () = x , where  has a continuous derivative. It is defined such that the Stieltjes integral ( ) ( ) b a f x d x   becomes the Riemann integral ( ) ( ) | b a f x x dx   .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信