{"title":"提到Twitter中使用协同多智能体强化学习的推荐","authors":"Tao Gui, Peng Liu, Qi Zhang, Liang Zhu, Minlong Peng, Yunhua Zhou, Xuanjing Huang","doi":"10.1145/3331184.3331237","DOIUrl":null,"url":null,"abstract":"In Twitter-like social networking services, the \"@'' symbol can be used with the tweet to mention users whom the user wants to alert regarding the message. An automatic suggestion to the user of a small list of candidate names can improve communication efficiency. Previous work usually used several most recent tweets or randomly select historical tweets to make an inference about this preferred list of names. However, because there are too many historical tweets by users and a wide variety of content types, the use of several tweets cannot guarantee the desired results. In this work, we propose the use of a novel cooperative multi-agent approach to mention recommendation, which incorporates dozens of more historical tweets than earlier approaches. The proposed method can effectively select a small set of historical tweets and cooperatively extract relevant indicator tweets from both the user and mentioned users. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Mention Recommendation in Twitter with Cooperative Multi-Agent Reinforcement Learning\",\"authors\":\"Tao Gui, Peng Liu, Qi Zhang, Liang Zhu, Minlong Peng, Yunhua Zhou, Xuanjing Huang\",\"doi\":\"10.1145/3331184.3331237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Twitter-like social networking services, the \\\"@'' symbol can be used with the tweet to mention users whom the user wants to alert regarding the message. An automatic suggestion to the user of a small list of candidate names can improve communication efficiency. Previous work usually used several most recent tweets or randomly select historical tweets to make an inference about this preferred list of names. However, because there are too many historical tweets by users and a wide variety of content types, the use of several tweets cannot guarantee the desired results. In this work, we propose the use of a novel cooperative multi-agent approach to mention recommendation, which incorporates dozens of more historical tweets than earlier approaches. The proposed method can effectively select a small set of historical tweets and cooperatively extract relevant indicator tweets from both the user and mentioned users. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mention Recommendation in Twitter with Cooperative Multi-Agent Reinforcement Learning
In Twitter-like social networking services, the "@'' symbol can be used with the tweet to mention users whom the user wants to alert regarding the message. An automatic suggestion to the user of a small list of candidate names can improve communication efficiency. Previous work usually used several most recent tweets or randomly select historical tweets to make an inference about this preferred list of names. However, because there are too many historical tweets by users and a wide variety of content types, the use of several tweets cannot guarantee the desired results. In this work, we propose the use of a novel cooperative multi-agent approach to mention recommendation, which incorporates dozens of more historical tweets than earlier approaches. The proposed method can effectively select a small set of historical tweets and cooperatively extract relevant indicator tweets from both the user and mentioned users. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods.