马尔可夫链的量子近似计数与碰撞计数

F. Gall, Iu-Iong Ng
{"title":"马尔可夫链的量子近似计数与碰撞计数","authors":"F. Gall, Iu-Iong Ng","doi":"10.26421/qic22.15-16-1","DOIUrl":null,"url":null,"abstract":"In this paper we show how to generalize the quantum approximate counting technique developed by Brassard, H{\\o}yer and Tapp [ICALP 1998] to a more general setting: estimating the number of marked states of a Markov chain (a Markov chain can be seen as a random walk over a graph with weighted edges). This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful ``quantum walk based search'' framework established by Magniez, Nayak, Roland and Santha [SIAM Journal on Computing 2011]. As an application, we apply this approach to the quantum element distinctness algorithm by Ambainis [SIAM Journal on Computing 2007]: for two injective functions over a set of $N$ elements, we obtain a quantum algorithm that estimates the number $m$ of collisions of the two functions within relative error $\\epsilon$ by making $\\tilde{O}\\left(\\frac{1}{\\epsilon^{25/24}}\\big(\\frac{N}{\\sqrt{m}}\\big)^{2/3}\\right)$ queries, which gives an improvement over the $\\Theta\\big(\\frac{1}{\\epsilon}\\frac{N}{\\sqrt{m}}\\big)$-query classical algorithm based on random sampling when $m\\ll N$.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"99 1","pages":"1261-1279"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum approximate counting for Markov chains and collision counting\",\"authors\":\"F. Gall, Iu-Iong Ng\",\"doi\":\"10.26421/qic22.15-16-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show how to generalize the quantum approximate counting technique developed by Brassard, H{\\\\o}yer and Tapp [ICALP 1998] to a more general setting: estimating the number of marked states of a Markov chain (a Markov chain can be seen as a random walk over a graph with weighted edges). This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful ``quantum walk based search'' framework established by Magniez, Nayak, Roland and Santha [SIAM Journal on Computing 2011]. As an application, we apply this approach to the quantum element distinctness algorithm by Ambainis [SIAM Journal on Computing 2007]: for two injective functions over a set of $N$ elements, we obtain a quantum algorithm that estimates the number $m$ of collisions of the two functions within relative error $\\\\epsilon$ by making $\\\\tilde{O}\\\\left(\\\\frac{1}{\\\\epsilon^{25/24}}\\\\big(\\\\frac{N}{\\\\sqrt{m}}\\\\big)^{2/3}\\\\right)$ queries, which gives an improvement over the $\\\\Theta\\\\big(\\\\frac{1}{\\\\epsilon}\\\\frac{N}{\\\\sqrt{m}}\\\\big)$-query classical algorithm based on random sampling when $m\\\\ll N$.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"99 1\",\"pages\":\"1261-1279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic22.15-16-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.15-16-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了如何将Brassard, H {\o} yer和Tapp [ICALP 1998]开发的量子近似计数技术推广到更一般的设置:估计马尔可夫链的标记状态的数量(马尔可夫链可以看作是带加权边的图上的随机漫步)。这使得基于Magniez, Nayak, Roland和Santha [SIAM Journal on Computing 2011]建立的强大的“基于量子行走的搜索”框架的量子搜索算法构建量子近似计数算法成为可能。作为一个应用,我们将这种方法应用于Ambainis的量子元素独特性算法[SIAM Journal on Computing 2007]:对于一组$N$元素上的两个内射函数,我们获得了一个量子算法,该算法通过进行$\tilde{O}\left(\frac{1}{\epsilon^{25/24}}\big(\frac{N}{\sqrt{m}}\big)^{2/3}\right)$查询来估计两个函数在相对误差$\epsilon$内的碰撞次数$m$,该算法在$m\ll N$时改进了基于随机抽样的$\Theta\big(\frac{1}{\epsilon}\frac{N}{\sqrt{m}}\big)$ -query经典算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum approximate counting for Markov chains and collision counting
In this paper we show how to generalize the quantum approximate counting technique developed by Brassard, H{\o}yer and Tapp [ICALP 1998] to a more general setting: estimating the number of marked states of a Markov chain (a Markov chain can be seen as a random walk over a graph with weighted edges). This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful ``quantum walk based search'' framework established by Magniez, Nayak, Roland and Santha [SIAM Journal on Computing 2011]. As an application, we apply this approach to the quantum element distinctness algorithm by Ambainis [SIAM Journal on Computing 2007]: for two injective functions over a set of $N$ elements, we obtain a quantum algorithm that estimates the number $m$ of collisions of the two functions within relative error $\epsilon$ by making $\tilde{O}\left(\frac{1}{\epsilon^{25/24}}\big(\frac{N}{\sqrt{m}}\big)^{2/3}\right)$ queries, which gives an improvement over the $\Theta\big(\frac{1}{\epsilon}\frac{N}{\sqrt{m}}\big)$-query classical algorithm based on random sampling when $m\ll N$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信