生物组织的聚合

H. Goto
{"title":"生物组织的聚合","authors":"H. Goto","doi":"10.18052/WWW.SCIPRESS.COM/ILCPA.68.18","DOIUrl":null,"url":null,"abstract":"Preparation of electro-active polymers having characteristic surface on biological tissue was carried out. Direct polymerisation on biological material with unique structure can be a new method to obtain functional structure with no use of top-down or bottom-up technologies. Polymerisations of pyrrole, aniline, and 3,4-ethylenedioxythiophene (EDOT) were carried out on the bio-tissues. Surface structure of the bio-tissue/conducting polymer composite was observed with optical microscopy. The results of the present study involve demonstration of deposition of conducting polymers on the surface of wood, membrane of egg, fungus, flower, and bacteria in the water medium. This method allows preparation of electro-active composites with ordered structure through combination of structures of biological tissues. Note that electrochemical polymerisation in bacterial electrolyte solution can be a first example to date.","PeriodicalId":14453,"journal":{"name":"International Letters of Chemistry, Physics and Astronomy","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymerisation on Bio-Tissues\",\"authors\":\"H. Goto\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/ILCPA.68.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preparation of electro-active polymers having characteristic surface on biological tissue was carried out. Direct polymerisation on biological material with unique structure can be a new method to obtain functional structure with no use of top-down or bottom-up technologies. Polymerisations of pyrrole, aniline, and 3,4-ethylenedioxythiophene (EDOT) were carried out on the bio-tissues. Surface structure of the bio-tissue/conducting polymer composite was observed with optical microscopy. The results of the present study involve demonstration of deposition of conducting polymers on the surface of wood, membrane of egg, fungus, flower, and bacteria in the water medium. This method allows preparation of electro-active composites with ordered structure through combination of structures of biological tissues. Note that electrochemical polymerisation in bacterial electrolyte solution can be a first example to date.\",\"PeriodicalId\":14453,\"journal\":{\"name\":\"International Letters of Chemistry, Physics and Astronomy\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Letters of Chemistry, Physics and Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILCPA.68.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Letters of Chemistry, Physics and Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILCPA.68.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生物组织上制备了具有特征表面的电活性聚合物。在具有独特结构的生物材料上直接聚合是一种无需自上而下或自下而上的技术来获得功能结构的新方法。在生物组织上进行了吡咯、苯胺和3,4-乙烯二氧噻吩(EDOT)的聚合。用光学显微镜观察了生物组织/导电聚合物复合材料的表面结构。本研究的结果包括证明导电聚合物在水介质中沉积在木材表面、鸡蛋膜、真菌膜、花膜和细菌膜上。该方法允许通过结合生物组织的结构制备具有有序结构的电活性复合材料。注意,细菌电解质溶液中的电化学聚合可以是迄今为止的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polymerisation on Bio-Tissues
Preparation of electro-active polymers having characteristic surface on biological tissue was carried out. Direct polymerisation on biological material with unique structure can be a new method to obtain functional structure with no use of top-down or bottom-up technologies. Polymerisations of pyrrole, aniline, and 3,4-ethylenedioxythiophene (EDOT) were carried out on the bio-tissues. Surface structure of the bio-tissue/conducting polymer composite was observed with optical microscopy. The results of the present study involve demonstration of deposition of conducting polymers on the surface of wood, membrane of egg, fungus, flower, and bacteria in the water medium. This method allows preparation of electro-active composites with ordered structure through combination of structures of biological tissues. Note that electrochemical polymerisation in bacterial electrolyte solution can be a first example to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信