{"title":"精确树深问题的一种算法","authors":"James Trimble","doi":"10.4230/LIPICS.SEA.2020.19","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm for the minimum-depth elimination tree problem, which is equivalent to the optimal treedepth decomposition problem. Our algorithm makes use of two cheaply-computed lower bound functions to prune the search tree, along with symmetry-breaking and domination rules. We present an empirical study showing that the algorithm outperforms the current state-of-the-art solver (which is based on a SAT encoding) by orders of magnitude on a range of graph classes.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"57 1","pages":"19:1-19:14"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Algorithm for the Exact Treedepth Problem\",\"authors\":\"James Trimble\",\"doi\":\"10.4230/LIPICS.SEA.2020.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm for the minimum-depth elimination tree problem, which is equivalent to the optimal treedepth decomposition problem. Our algorithm makes use of two cheaply-computed lower bound functions to prune the search tree, along with symmetry-breaking and domination rules. We present an empirical study showing that the algorithm outperforms the current state-of-the-art solver (which is based on a SAT encoding) by orders of magnitude on a range of graph classes.\",\"PeriodicalId\":9448,\"journal\":{\"name\":\"Bulletin of the Society of Sea Water Science, Japan\",\"volume\":\"57 1\",\"pages\":\"19:1-19:14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Society of Sea Water Science, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPICS.SEA.2020.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPICS.SEA.2020.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a novel algorithm for the minimum-depth elimination tree problem, which is equivalent to the optimal treedepth decomposition problem. Our algorithm makes use of two cheaply-computed lower bound functions to prune the search tree, along with symmetry-breaking and domination rules. We present an empirical study showing that the algorithm outperforms the current state-of-the-art solver (which is based on a SAT encoding) by orders of magnitude on a range of graph classes.