经典量子通道的斯坦引理

M. Berta, C. Hirche, Eneet Kaur, M. Wilde
{"title":"经典量子通道的斯坦引理","authors":"M. Berta, C. Hirche, Eneet Kaur, M. Wilde","doi":"10.1109/ISIT.2019.8849562","DOIUrl":null,"url":null,"abstract":"It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein’s lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"133 1","pages":"2564-2568"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stein’s Lemma for Classical-Quantum Channels\",\"authors\":\"M. Berta, C. Hirche, Eneet Kaur, M. Wilde\",\"doi\":\"10.1109/ISIT.2019.8849562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein’s lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"133 1\",\"pages\":\"2564-2568\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

众所周知,对于有限非渐近状态下的经典通道和量子通道的区分,自适应策略比非自适应策略具有优势。然而,Hayashi [IEEE Trans.]Inf. Theory 55(8), 3807(2009)]表明,在渐近状态下,自适应设置下经典信道判别的指数错误率没有得到改善。我们证明,对于经典量子信道的判别,自适应策略不会导致渐近优势。作为我们的主要结果,这建立了经典量子通道的斯坦引理。我们的证明是基于信道的平摊可分辨性的概念,我们用熵不等式来分析这个概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stein’s Lemma for Classical-Quantum Channels
It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein’s lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信