计算&lgr;(n)/Ck/1/ n队列的均衡概率

Performance Pub Date : 1980-05-28 DOI:10.1145/800199.806155
Raymond A. Marie
{"title":"计算&lgr;(n)/Ck/1/ n队列的均衡概率","authors":"Raymond A. Marie","doi":"10.1145/800199.806155","DOIUrl":null,"url":null,"abstract":"Equilibrium state distributions are determined for queues with load-dependent Poisson arrivals and service time distributions representable by Cox's generalized method of stages. The solution is obtained by identifying a birth-death process that has the same equilibrium state distribution as the original queue. Special cases of two-stage (C2) and Erlang-k (Ek) service processes permit particularly efficient algorithms for calculating the load - dependent service rates of the birth-death process corresponding to the original queue. Knowing the parameters of the birth-death process, the equilibrium state probabilities can be calculated straight-forwardly. This technique is particularly useful when subsystems are reduced to flow-equivalent servers representing the complementary network.","PeriodicalId":32394,"journal":{"name":"Performance","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1980-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"Calculating equilibrium probabilities for &lgr;(n)/Ck/1/N queues\",\"authors\":\"Raymond A. Marie\",\"doi\":\"10.1145/800199.806155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equilibrium state distributions are determined for queues with load-dependent Poisson arrivals and service time distributions representable by Cox's generalized method of stages. The solution is obtained by identifying a birth-death process that has the same equilibrium state distribution as the original queue. Special cases of two-stage (C2) and Erlang-k (Ek) service processes permit particularly efficient algorithms for calculating the load - dependent service rates of the birth-death process corresponding to the original queue. Knowing the parameters of the birth-death process, the equilibrium state probabilities can be calculated straight-forwardly. This technique is particularly useful when subsystems are reduced to flow-equivalent servers representing the complementary network.\",\"PeriodicalId\":32394,\"journal\":{\"name\":\"Performance\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800199.806155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800199.806155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

本文确定了具有泊松到达和服务时间分布的负载相关队列的平衡状态分布,服务时间分布用Cox广义阶段法表示。通过识别一个与原始队列具有相同平衡状态分布的生-死过程,得到了该问题的解。两阶段(C2)和Erlang-k (Ek)服务进程的特殊情况允许特别有效的算法来计算与原始队列对应的出生-死亡进程的负载相关的服务速率。知道了生灭过程的参数,就可以直接计算出平衡状态的概率。当子系统被简化为表示互补网络的流等效服务器时,这种技术特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculating equilibrium probabilities for &lgr;(n)/Ck/1/N queues
Equilibrium state distributions are determined for queues with load-dependent Poisson arrivals and service time distributions representable by Cox's generalized method of stages. The solution is obtained by identifying a birth-death process that has the same equilibrium state distribution as the original queue. Special cases of two-stage (C2) and Erlang-k (Ek) service processes permit particularly efficient algorithms for calculating the load - dependent service rates of the birth-death process corresponding to the original queue. Knowing the parameters of the birth-death process, the equilibrium state probabilities can be calculated straight-forwardly. This technique is particularly useful when subsystems are reduced to flow-equivalent servers representing the complementary network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信