Y. Liang, Liang Ding, Qing Song, Ben Zhao, Siyu Wang, Sheng Liu
{"title":"三种菌株对阿特拉津的生物降解:鉴定、酶活性和生物降解机制","authors":"Y. Liang, Liang Ding, Qing Song, Ben Zhao, Siyu Wang, Sheng Liu","doi":"10.1080/26395940.2022.2151515","DOIUrl":null,"url":null,"abstract":"ABSTRACT Biodegradation could remove atrazine from contaminated soil and water. In this work, three isolated bacterial strains D2, D6, and D17 were identified as Solibacillus, Bacillus, and Arthrobacter, respectively.They can rapidly degrade atrazine and effectively alleviate the phytotoxic effects of atrazine, with degradation efficiency following D2> D6>D17. Besides having the highest amount of exoenzyme and endoenzyme, the highest exoenzyme ratio in strain D2 also contributed to the highest atrazine degradation, as exoenzyme facilitated the direct reaction with atrazine in a short time and alleviated the stress of pollutant on strains, while more endoenzyme for D6 and D17 indicated degradation acted only after across the membrane, which needs more time to degradation. Furthermore, trzN in strain D2 can degrade atrazine to hydroxyatrazine. The biodegradation product of atrazine by strain D2 was cyanuric acid via dichlorination, hydroxylation, hydrodealkylation, methylation, dealkylation, elimination, and hydrolysis.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biodegradation of atrazine by three strains: identification, enzymes activities, and biodegradation mechanism\",\"authors\":\"Y. Liang, Liang Ding, Qing Song, Ben Zhao, Siyu Wang, Sheng Liu\",\"doi\":\"10.1080/26395940.2022.2151515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Biodegradation could remove atrazine from contaminated soil and water. In this work, three isolated bacterial strains D2, D6, and D17 were identified as Solibacillus, Bacillus, and Arthrobacter, respectively.They can rapidly degrade atrazine and effectively alleviate the phytotoxic effects of atrazine, with degradation efficiency following D2> D6>D17. Besides having the highest amount of exoenzyme and endoenzyme, the highest exoenzyme ratio in strain D2 also contributed to the highest atrazine degradation, as exoenzyme facilitated the direct reaction with atrazine in a short time and alleviated the stress of pollutant on strains, while more endoenzyme for D6 and D17 indicated degradation acted only after across the membrane, which needs more time to degradation. Furthermore, trzN in strain D2 can degrade atrazine to hydroxyatrazine. The biodegradation product of atrazine by strain D2 was cyanuric acid via dichlorination, hydroxylation, hydrodealkylation, methylation, dealkylation, elimination, and hydrolysis.\",\"PeriodicalId\":11785,\"journal\":{\"name\":\"Environmental Pollutants and Bioavailability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollutants and Bioavailability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/26395940.2022.2151515\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollutants and Bioavailability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26395940.2022.2151515","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biodegradation of atrazine by three strains: identification, enzymes activities, and biodegradation mechanism
ABSTRACT Biodegradation could remove atrazine from contaminated soil and water. In this work, three isolated bacterial strains D2, D6, and D17 were identified as Solibacillus, Bacillus, and Arthrobacter, respectively.They can rapidly degrade atrazine and effectively alleviate the phytotoxic effects of atrazine, with degradation efficiency following D2> D6>D17. Besides having the highest amount of exoenzyme and endoenzyme, the highest exoenzyme ratio in strain D2 also contributed to the highest atrazine degradation, as exoenzyme facilitated the direct reaction with atrazine in a short time and alleviated the stress of pollutant on strains, while more endoenzyme for D6 and D17 indicated degradation acted only after across the membrane, which needs more time to degradation. Furthermore, trzN in strain D2 can degrade atrazine to hydroxyatrazine. The biodegradation product of atrazine by strain D2 was cyanuric acid via dichlorination, hydroxylation, hydrodealkylation, methylation, dealkylation, elimination, and hydrolysis.
期刊介绍:
Environmental Pollutants & Bioavailability is a peer-reviewed open access forum for insights on the chemical aspects of pollutants in the environment and biota, and their impacts on the uptake of the substances by living organisms.
Topics include the occurrence, distribution, transport, transformation, transfer, fate, and effects of environmental pollutants, as well as their impact on living organisms. Substances of interests include heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants.