调节钴中心配位环境提高电催化生产h2o2的性能

IF 2.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Guoling Wu, Zhongjie Yang, Tianlin Zhang, Yali Sun, Chang Long, Song Yaru, Shengbin Lei, Zhiyong Tang
{"title":"调节钴中心配位环境提高电催化生产h2o2的性能","authors":"Guoling Wu, Zhongjie Yang, Tianlin Zhang, Yali Sun, Chang Long, Song Yaru, Shengbin Lei, Zhiyong Tang","doi":"10.1002/bkcs.12348","DOIUrl":null,"url":null,"abstract":"As an environmentally friendly oxidant, H2O2 is widely utilized in various fields; however, its production methods remain limited to the chemical anthraquinone process. Alternatively, electrocatalytic oxygen reduction possesses numerous notable advantages (e.g., cost-effectiveness, small-scale, and distributed nature). As electrocatalytic oxygen reduction has been widely investigated in the fields of fuel cells and metal-air batteries, the mechanism of the 2e−-ORR pathway for producing H2O2 is not sufficiently clear. Herein, we explore the effect of the cobalt (Co) coordination environment on the electrochemical production of H2O2. The detailed investigation on N-, P-, and S-coordinated Co catalysts (Co1N1N3, Co1P1N3, and Co1S1N3) demonstrates that changing the coordination environment evidently affects the H2O2 selectivity, and the S-coordinated Co exhibits the best catalytic performance. This finding would lead to the design and selection of catalysts at atomic level for producing H2O2 via electrocatalytic oxygen reduction.","PeriodicalId":9457,"journal":{"name":"Bulletin of The Korean Chemical Society","volume":"66 4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing Electrocatalytic Production of\\n \\n H\\n 2\\n O\\n 2\\n \\n by Modulating Coordination Environment of Cobalt Center\",\"authors\":\"Guoling Wu, Zhongjie Yang, Tianlin Zhang, Yali Sun, Chang Long, Song Yaru, Shengbin Lei, Zhiyong Tang\",\"doi\":\"10.1002/bkcs.12348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an environmentally friendly oxidant, H2O2 is widely utilized in various fields; however, its production methods remain limited to the chemical anthraquinone process. Alternatively, electrocatalytic oxygen reduction possesses numerous notable advantages (e.g., cost-effectiveness, small-scale, and distributed nature). As electrocatalytic oxygen reduction has been widely investigated in the fields of fuel cells and metal-air batteries, the mechanism of the 2e−-ORR pathway for producing H2O2 is not sufficiently clear. Herein, we explore the effect of the cobalt (Co) coordination environment on the electrochemical production of H2O2. The detailed investigation on N-, P-, and S-coordinated Co catalysts (Co1N1N3, Co1P1N3, and Co1S1N3) demonstrates that changing the coordination environment evidently affects the H2O2 selectivity, and the S-coordinated Co exhibits the best catalytic performance. This finding would lead to the design and selection of catalysts at atomic level for producing H2O2 via electrocatalytic oxygen reduction.\",\"PeriodicalId\":9457,\"journal\":{\"name\":\"Bulletin of The Korean Chemical Society\",\"volume\":\"66 4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Korean Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/bkcs.12348\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/bkcs.12348","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

H2O2作为一种环保型氧化剂,被广泛应用于各个领域;然而,其生产方法仍然局限于化学蒽醌法。另外,电催化氧还原具有许多显著的优点(例如,成本效益,小规模和分布式)。由于电催化氧还原在燃料电池和金属-空气电池领域的研究越来越广泛,2e−-ORR途径产生H2O2的机理还不够清楚。本文探讨了钴(Co)配位环境对电化学生成H2O2的影响。对N-、P-和s -配位Co催化剂(Co1N1N3、Co1P1N3和Co1S1N3)的详细研究表明,改变配位环境对H2O2选择性有明显影响,其中s -配位Co表现出最好的催化性能。这一发现将导致在原子水平上设计和选择通过电催化氧还原产生H2O2的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Electrocatalytic Production of H 2 O 2 by Modulating Coordination Environment of Cobalt Center
As an environmentally friendly oxidant, H2O2 is widely utilized in various fields; however, its production methods remain limited to the chemical anthraquinone process. Alternatively, electrocatalytic oxygen reduction possesses numerous notable advantages (e.g., cost-effectiveness, small-scale, and distributed nature). As electrocatalytic oxygen reduction has been widely investigated in the fields of fuel cells and metal-air batteries, the mechanism of the 2e−-ORR pathway for producing H2O2 is not sufficiently clear. Herein, we explore the effect of the cobalt (Co) coordination environment on the electrochemical production of H2O2. The detailed investigation on N-, P-, and S-coordinated Co catalysts (Co1N1N3, Co1P1N3, and Co1S1N3) demonstrates that changing the coordination environment evidently affects the H2O2 selectivity, and the S-coordinated Co exhibits the best catalytic performance. This finding would lead to the design and selection of catalysts at atomic level for producing H2O2 via electrocatalytic oxygen reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
23.50%
发文量
182
审稿时长
2.3 months
期刊介绍: The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信