{"title":"利用对偶间隙法增强无人机时间最优轨迹的双层优化","authors":"Gao Tang, Weidong Sun, Kris K. Hauser","doi":"10.1109/ICRA40945.2020.9196789","DOIUrl":null,"url":null,"abstract":"Time-optimal trajectories for dynamic robotic vehicles are difficult to compute even for state-of-the-art nonlinear programming (NLP) solvers, due to nonlinearity and bang-bang control structure. This paper presents a bilevel optimization framework that addresses these problems by decomposing the spatial and temporal variables into a hierarchical optimization. Specifically, the original problem is divided into an inner layer, which computes a time-optimal velocity profile along a given geometric path, and an outer layer, which refines the geometric path by a Quasi-Newton method. The inner optimization is convex and efficiently solved by interior-point methods. The gradients of the outer layer can be analytically obtained using sensitivity analysis of parametric optimization problems. A novel contribution is to introduce a duality gap in the inner optimization rather than solving it to optimality; this lets the optimizer realize warm-starting of the interior-point method, avoids non-smoothness of the outer cost function caused by active inequality constraint switching. Like prior bilevel frameworks, this method is guaranteed to return a feasible solution at any time, but converges faster than gap-free bilevel optimization. Numerical experiments on a drone model with velocity and acceleration limits show that the proposed method performs faster and more robustly than gap-free bilevel optimization and general NLP solvers.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"563 1","pages":"2515-2521"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Enhancing Bilevel Optimization for UAV Time-Optimal Trajectory using a Duality Gap Approach\",\"authors\":\"Gao Tang, Weidong Sun, Kris K. Hauser\",\"doi\":\"10.1109/ICRA40945.2020.9196789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-optimal trajectories for dynamic robotic vehicles are difficult to compute even for state-of-the-art nonlinear programming (NLP) solvers, due to nonlinearity and bang-bang control structure. This paper presents a bilevel optimization framework that addresses these problems by decomposing the spatial and temporal variables into a hierarchical optimization. Specifically, the original problem is divided into an inner layer, which computes a time-optimal velocity profile along a given geometric path, and an outer layer, which refines the geometric path by a Quasi-Newton method. The inner optimization is convex and efficiently solved by interior-point methods. The gradients of the outer layer can be analytically obtained using sensitivity analysis of parametric optimization problems. A novel contribution is to introduce a duality gap in the inner optimization rather than solving it to optimality; this lets the optimizer realize warm-starting of the interior-point method, avoids non-smoothness of the outer cost function caused by active inequality constraint switching. Like prior bilevel frameworks, this method is guaranteed to return a feasible solution at any time, but converges faster than gap-free bilevel optimization. Numerical experiments on a drone model with velocity and acceleration limits show that the proposed method performs faster and more robustly than gap-free bilevel optimization and general NLP solvers.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"563 1\",\"pages\":\"2515-2521\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Bilevel Optimization for UAV Time-Optimal Trajectory using a Duality Gap Approach
Time-optimal trajectories for dynamic robotic vehicles are difficult to compute even for state-of-the-art nonlinear programming (NLP) solvers, due to nonlinearity and bang-bang control structure. This paper presents a bilevel optimization framework that addresses these problems by decomposing the spatial and temporal variables into a hierarchical optimization. Specifically, the original problem is divided into an inner layer, which computes a time-optimal velocity profile along a given geometric path, and an outer layer, which refines the geometric path by a Quasi-Newton method. The inner optimization is convex and efficiently solved by interior-point methods. The gradients of the outer layer can be analytically obtained using sensitivity analysis of parametric optimization problems. A novel contribution is to introduce a duality gap in the inner optimization rather than solving it to optimality; this lets the optimizer realize warm-starting of the interior-point method, avoids non-smoothness of the outer cost function caused by active inequality constraint switching. Like prior bilevel frameworks, this method is guaranteed to return a feasible solution at any time, but converges faster than gap-free bilevel optimization. Numerical experiments on a drone model with velocity and acceleration limits show that the proposed method performs faster and more robustly than gap-free bilevel optimization and general NLP solvers.