Noor Syafina Mahamad Jainalabidin, Aqib Fawwaz Mohd Amidon, N. Ismail, Z. Mohd Yusoff, S. N. Tajuddin, M. Taib
{"title":"在沉香油质量分类中,基于不同马氏度和相关距离度量的k近邻模型","authors":"Noor Syafina Mahamad Jainalabidin, Aqib Fawwaz Mohd Amidon, N. Ismail, Z. Mohd Yusoff, S. N. Tajuddin, M. Taib","doi":"10.11591/ijaas.v11.i3.pp242-252","DOIUrl":null,"url":null,"abstract":"Agarwood oil is well known for its unique scent and has many usages; as an incense, as ingredient in perfume, is burnt during religious ceremonies and is used in traditional medical preparation. Therefore, agarwood oil has high demand and is traded at different price based on its quality. Basically, the oil quality is classified by using physical properties (odor and color) and this technique has several problems: not consistent in term of accuracy. Thus, this study presented a new technique to classify the quality of agarwood oil based on chemical properties. The work focused on the k-Nearest Neighbor (k-NN) modelling by varying Mahalanobis and Correlation in distance metric for agarwood oil quality classification. It involved of 96 samples of agarwood oil, data pre-processing (data randomization, data normalization, and data division to testing and training datasets) and the development of k-NN model. The training dataset is used to train the k-NN model, and the testing dataset is used to test the developed model. During the model development, Mahalanobis and Correlation are varied in k-NN distance metric. The k-NN values are ranging from 1 to 10. Several performance criteria including resubstitution error (closs), cross-validation error (kloss) and accuracy were applied to measure the performance of the built k-NN model. All the analytical work was performed via MATLAB software version R2020a. The result showed that the accuracy of Mahalanobis distance metric has a better performance compared to Correlation from k=1 to k=5 with the value of 100.00%. This finding is important as it proved the capabilities of k-NN modelling in classifying the agarwood oil quality. Not limited to that, it also contributed to the agarwood oil research area as well as its industry.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The k-Nearest Neighbor modelling by varying Mahalanobis and Correlation in distance metric for agarwood oil quality classification\",\"authors\":\"Noor Syafina Mahamad Jainalabidin, Aqib Fawwaz Mohd Amidon, N. Ismail, Z. Mohd Yusoff, S. N. Tajuddin, M. Taib\",\"doi\":\"10.11591/ijaas.v11.i3.pp242-252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agarwood oil is well known for its unique scent and has many usages; as an incense, as ingredient in perfume, is burnt during religious ceremonies and is used in traditional medical preparation. Therefore, agarwood oil has high demand and is traded at different price based on its quality. Basically, the oil quality is classified by using physical properties (odor and color) and this technique has several problems: not consistent in term of accuracy. Thus, this study presented a new technique to classify the quality of agarwood oil based on chemical properties. The work focused on the k-Nearest Neighbor (k-NN) modelling by varying Mahalanobis and Correlation in distance metric for agarwood oil quality classification. It involved of 96 samples of agarwood oil, data pre-processing (data randomization, data normalization, and data division to testing and training datasets) and the development of k-NN model. The training dataset is used to train the k-NN model, and the testing dataset is used to test the developed model. During the model development, Mahalanobis and Correlation are varied in k-NN distance metric. The k-NN values are ranging from 1 to 10. Several performance criteria including resubstitution error (closs), cross-validation error (kloss) and accuracy were applied to measure the performance of the built k-NN model. All the analytical work was performed via MATLAB software version R2020a. The result showed that the accuracy of Mahalanobis distance metric has a better performance compared to Correlation from k=1 to k=5 with the value of 100.00%. This finding is important as it proved the capabilities of k-NN modelling in classifying the agarwood oil quality. Not limited to that, it also contributed to the agarwood oil research area as well as its industry.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v11.i3.pp242-252\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v11.i3.pp242-252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
沉香油以其独特的香味和多种用途而闻名;作为一种香,作为香水的成分,在宗教仪式上燃烧,并用于传统的医学制剂。因此沉香油的需求量很大,并根据其质量以不同的价格进行交易。基本上,油品质量是根据物理性质(气味和颜色)分类的,这种技术有几个问题:在准确性方面不一致。因此,本研究提出了一种基于化学性质对沉香油质量进行分类的新方法。研究了k-最近邻(k-NN)模型,通过改变距离度量中的Mahalanobis和Correlation来进行沉香油质量分类。它涉及96个沉香油样本,数据预处理(数据随机化,数据归一化,数据划分到测试和训练数据集)和k-NN模型的开发。训练数据集用于训练k-NN模型,测试数据集用于测试开发的模型。在模型开发过程中,k-NN距离度量中的马氏比和相关系数发生了变化。k-NN的取值范围是1 ~ 10。采用几种性能标准,包括重新替换误差(closs)、交叉验证误差(kloss)和准确性来衡量所构建的k-NN模型的性能。所有分析工作均通过R2020a版本的MATLAB软件进行。结果表明,与k=1 ~ k=5的相关性(Correlation from k=1 ~ k=5)相比,马氏距离度量的精度为100.00%,具有更好的性能。这一发现很重要,因为它证明了k-NN建模在沉香油质量分类中的能力。不仅如此,它还为沉香油研究领域和沉香油产业做出了贡献。
The k-Nearest Neighbor modelling by varying Mahalanobis and Correlation in distance metric for agarwood oil quality classification
Agarwood oil is well known for its unique scent and has many usages; as an incense, as ingredient in perfume, is burnt during religious ceremonies and is used in traditional medical preparation. Therefore, agarwood oil has high demand and is traded at different price based on its quality. Basically, the oil quality is classified by using physical properties (odor and color) and this technique has several problems: not consistent in term of accuracy. Thus, this study presented a new technique to classify the quality of agarwood oil based on chemical properties. The work focused on the k-Nearest Neighbor (k-NN) modelling by varying Mahalanobis and Correlation in distance metric for agarwood oil quality classification. It involved of 96 samples of agarwood oil, data pre-processing (data randomization, data normalization, and data division to testing and training datasets) and the development of k-NN model. The training dataset is used to train the k-NN model, and the testing dataset is used to test the developed model. During the model development, Mahalanobis and Correlation are varied in k-NN distance metric. The k-NN values are ranging from 1 to 10. Several performance criteria including resubstitution error (closs), cross-validation error (kloss) and accuracy were applied to measure the performance of the built k-NN model. All the analytical work was performed via MATLAB software version R2020a. The result showed that the accuracy of Mahalanobis distance metric has a better performance compared to Correlation from k=1 to k=5 with the value of 100.00%. This finding is important as it proved the capabilities of k-NN modelling in classifying the agarwood oil quality. Not limited to that, it also contributed to the agarwood oil research area as well as its industry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.