社会信息网络中的数据流建模:一种风险评估方法

Ting Wang, M. Srivatsa, D. Agrawal, Ling Liu
{"title":"社会信息网络中的数据流建模:一种风险评估方法","authors":"Ting Wang, M. Srivatsa, D. Agrawal, Ling Liu","doi":"10.1145/1998441.1998458","DOIUrl":null,"url":null,"abstract":"Information leakage via the networks formed by subjects (e.g., Facebook, Twitter) and objects (e.g., blogosphere) - some of whom may be controlled by malicious insiders - often leads to unpredicted access control risks. While it may be impossible to precisely quantify information flows between two entities (e.g., two friends in a social network), this paper presents a first attempt towards leveraging recent advances in modeling socio-information networks to develop a statistical risk estimation paradigm for quantifying such insider threats. In the context of socio-information networks, our models estimate the following likelihoods: prior flow - has a subject $s$ acquired covert access to object o via the networks? posterior flow - if s is granted access to o, what is its impact on information flows between subject s' and object o'? network evolution - how will a newly created social relationship between s and s' influence current risk estimates? Our goal is not to prescribe a one-size-fits-all solution; instead we develop a set of composable network-centric risk estimation operators, with implementations configurable to concrete socio-information networks. The efficacy of our solutions is empirically evaluated using real-life datasets collected from the IBM SmallBlue project and Twitter.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"54 1","pages":"113-122"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Modeling data flow in socio-information networks: a risk estimation approach\",\"authors\":\"Ting Wang, M. Srivatsa, D. Agrawal, Ling Liu\",\"doi\":\"10.1145/1998441.1998458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information leakage via the networks formed by subjects (e.g., Facebook, Twitter) and objects (e.g., blogosphere) - some of whom may be controlled by malicious insiders - often leads to unpredicted access control risks. While it may be impossible to precisely quantify information flows between two entities (e.g., two friends in a social network), this paper presents a first attempt towards leveraging recent advances in modeling socio-information networks to develop a statistical risk estimation paradigm for quantifying such insider threats. In the context of socio-information networks, our models estimate the following likelihoods: prior flow - has a subject $s$ acquired covert access to object o via the networks? posterior flow - if s is granted access to o, what is its impact on information flows between subject s' and object o'? network evolution - how will a newly created social relationship between s and s' influence current risk estimates? Our goal is not to prescribe a one-size-fits-all solution; instead we develop a set of composable network-centric risk estimation operators, with implementations configurable to concrete socio-information networks. The efficacy of our solutions is empirically evaluated using real-life datasets collected from the IBM SmallBlue project and Twitter.\",\"PeriodicalId\":74509,\"journal\":{\"name\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"volume\":\"54 1\",\"pages\":\"113-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1998441.1998458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1998441.1998458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

信息通过主体(如Facebook、Twitter)和客体(如博客圈)组成的网络泄露——其中一些可能被恶意的内部人士控制——往往会导致不可预测的访问控制风险。虽然精确量化两个实体之间的信息流(例如,社交网络中的两个朋友)可能是不可能的,但本文首次尝试利用社会信息网络建模的最新进展,开发用于量化此类内部威胁的统计风险评估范式。在社会信息网络的背景下,我们的模型估计了以下可能性:先验流-主体是否通过网络获得了对对象0的隐蔽访问?后验流——如果s被允许进入o,它对主体s'和客体o'之间的信息流有什么影响?网络进化——s和s之间新建立的社会关系将如何影响当前的风险估计?我们的目标不是开一个一刀切的解决方案;相反,我们开发了一组可组合的以网络为中心的风险估计算子,其实现可配置到具体的社会信息网络。我们的解决方案的有效性是使用从IBM SmallBlue项目和Twitter收集的真实数据集进行经验评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling data flow in socio-information networks: a risk estimation approach
Information leakage via the networks formed by subjects (e.g., Facebook, Twitter) and objects (e.g., blogosphere) - some of whom may be controlled by malicious insiders - often leads to unpredicted access control risks. While it may be impossible to precisely quantify information flows between two entities (e.g., two friends in a social network), this paper presents a first attempt towards leveraging recent advances in modeling socio-information networks to develop a statistical risk estimation paradigm for quantifying such insider threats. In the context of socio-information networks, our models estimate the following likelihoods: prior flow - has a subject $s$ acquired covert access to object o via the networks? posterior flow - if s is granted access to o, what is its impact on information flows between subject s' and object o'? network evolution - how will a newly created social relationship between s and s' influence current risk estimates? Our goal is not to prescribe a one-size-fits-all solution; instead we develop a set of composable network-centric risk estimation operators, with implementations configurable to concrete socio-information networks. The efficacy of our solutions is empirically evaluated using real-life datasets collected from the IBM SmallBlue project and Twitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信