{"title":"里奇流奇点模型的标量曲率下界","authors":"Pak-Yeung Chan, B. Chow, Zilu Ma, Yongjia Zhang","doi":"10.1515/crelle-2022-0086","DOIUrl":null,"url":null,"abstract":"Abstract In a series of papers, Bamler [5, 4, 6] further developed the high-dimensional theory of Hamilton’s Ricci flow to include new monotonicity formulas, a completely general compactness theorem, and a long-sought partial regularity theory analogous to Cheeger–Colding theory. In this paper we give an application of his theory to lower bounds for the scalar curvatures of singularity models for Ricci flow. In the case of 4-dimensional non-Ricci-flat steady soliton singularity models, we obtain as a consequence a quadratic decay lower bound for the scalar curvature.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lower bounds for the scalar curvatures of Ricci flow singularity models\",\"authors\":\"Pak-Yeung Chan, B. Chow, Zilu Ma, Yongjia Zhang\",\"doi\":\"10.1515/crelle-2022-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a series of papers, Bamler [5, 4, 6] further developed the high-dimensional theory of Hamilton’s Ricci flow to include new monotonicity formulas, a completely general compactness theorem, and a long-sought partial regularity theory analogous to Cheeger–Colding theory. In this paper we give an application of his theory to lower bounds for the scalar curvatures of singularity models for Ricci flow. In the case of 4-dimensional non-Ricci-flat steady soliton singularity models, we obtain as a consequence a quadratic decay lower bound for the scalar curvature.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0086\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0086","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lower bounds for the scalar curvatures of Ricci flow singularity models
Abstract In a series of papers, Bamler [5, 4, 6] further developed the high-dimensional theory of Hamilton’s Ricci flow to include new monotonicity formulas, a completely general compactness theorem, and a long-sought partial regularity theory analogous to Cheeger–Colding theory. In this paper we give an application of his theory to lower bounds for the scalar curvatures of singularity models for Ricci flow. In the case of 4-dimensional non-Ricci-flat steady soliton singularity models, we obtain as a consequence a quadratic decay lower bound for the scalar curvature.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.