木薯淀粉导电聚合物负载聚吡咯/对甲苯磺酸钠生物膜的合成及电化学表征

E. M. Miguel, A. Alvaro, S. Manuel
{"title":"木薯淀粉导电聚合物负载聚吡咯/对甲苯磺酸钠生物膜的合成及电化学表征","authors":"E. M. Miguel, A. Alvaro, S. Manuel","doi":"10.19026/ajfst.16.5947","DOIUrl":null,"url":null,"abstract":"The aim of this study is to evaluate how the number of dopants in the cassava starch polymer and the oxidation potential of the cathode influence the electrical energy accumulation properties. Materials are synthesized by two stages: In the stage I, synthesis of the conductive polymer was performed from cassava starch, plasticizers and lithium perchlorate; later, in the stage II, salt-doped polypyrrole was electrochemically synthesized. Sodium ptoluenesulfonate and lithium perchlorate were used as doping salts. Characterization of materials were performed by Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry. The best results were obtained for assays 1 and 4 constituted by1.5 g of starch and 0.5 V for the cathode and 3 g of starch and 0.7 V for the cathode, respectively. Respective specific charge capacities and specific energies were 3.765×10-4 Ah/kg and 3.477×10-5 Wh/kg for the assay 1 and 2.234×10-4 Ah/kg and 9.095×10-5 Wh/kg for the assay 4. These responses are associated with a higher values of electrical conductivity for the assay 1 and 4 by EIS, favoring the mobility of the charges within the materials; Finally, the stability of assay voltammograms indicates how their properties can be maintained at the time.","PeriodicalId":7316,"journal":{"name":"Advance Journal of Food Science and Technology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and Electrochemical Characterization of Polypyrrole/Sodium p-Toluenesulfonate Biofilms Supported on Cassava Starch Conductive Polymers for Applications in Electrical Charge Accumulators\",\"authors\":\"E. M. Miguel, A. Alvaro, S. Manuel\",\"doi\":\"10.19026/ajfst.16.5947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to evaluate how the number of dopants in the cassava starch polymer and the oxidation potential of the cathode influence the electrical energy accumulation properties. Materials are synthesized by two stages: In the stage I, synthesis of the conductive polymer was performed from cassava starch, plasticizers and lithium perchlorate; later, in the stage II, salt-doped polypyrrole was electrochemically synthesized. Sodium ptoluenesulfonate and lithium perchlorate were used as doping salts. Characterization of materials were performed by Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry. The best results were obtained for assays 1 and 4 constituted by1.5 g of starch and 0.5 V for the cathode and 3 g of starch and 0.7 V for the cathode, respectively. Respective specific charge capacities and specific energies were 3.765×10-4 Ah/kg and 3.477×10-5 Wh/kg for the assay 1 and 2.234×10-4 Ah/kg and 9.095×10-5 Wh/kg for the assay 4. These responses are associated with a higher values of electrical conductivity for the assay 1 and 4 by EIS, favoring the mobility of the charges within the materials; Finally, the stability of assay voltammograms indicates how their properties can be maintained at the time.\",\"PeriodicalId\":7316,\"journal\":{\"name\":\"Advance Journal of Food Science and Technology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advance Journal of Food Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19026/ajfst.16.5947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advance Journal of Food Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19026/ajfst.16.5947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是评估木薯淀粉聚合物中掺杂物的数量和阴极的氧化电位对电能积累性能的影响。材料的合成分为两个阶段:第一阶段,以木薯淀粉、增塑剂和高氯酸锂为原料合成导电聚合物;随后,在第二阶段,电化学合成了盐掺杂的聚吡咯。以甲苯磺酸钠和高氯酸锂为掺杂盐。采用电化学阻抗谱(EIS)和循环伏安法对材料进行表征。试验1和试验4分别以1.5 g淀粉和0.5 V的阴极和3g淀粉和0.7 V的阴极组成,得到最好的结果。测定1的比电荷容量和比能分别为3.765×10-4 Ah/kg和3.477×10-5 Wh/kg,测定4的比电荷容量和比能分别为2.234×10-4 Ah/kg和9.095×10-5 Wh/kg。这些反应与EIS测定1和4的较高电导率值有关,有利于材料内电荷的迁移;最后,测定伏安图的稳定性表明它们的性质在当时是如何保持的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and Electrochemical Characterization of Polypyrrole/Sodium p-Toluenesulfonate Biofilms Supported on Cassava Starch Conductive Polymers for Applications in Electrical Charge Accumulators
The aim of this study is to evaluate how the number of dopants in the cassava starch polymer and the oxidation potential of the cathode influence the electrical energy accumulation properties. Materials are synthesized by two stages: In the stage I, synthesis of the conductive polymer was performed from cassava starch, plasticizers and lithium perchlorate; later, in the stage II, salt-doped polypyrrole was electrochemically synthesized. Sodium ptoluenesulfonate and lithium perchlorate were used as doping salts. Characterization of materials were performed by Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry. The best results were obtained for assays 1 and 4 constituted by1.5 g of starch and 0.5 V for the cathode and 3 g of starch and 0.7 V for the cathode, respectively. Respective specific charge capacities and specific energies were 3.765×10-4 Ah/kg and 3.477×10-5 Wh/kg for the assay 1 and 2.234×10-4 Ah/kg and 9.095×10-5 Wh/kg for the assay 4. These responses are associated with a higher values of electrical conductivity for the assay 1 and 4 by EIS, favoring the mobility of the charges within the materials; Finally, the stability of assay voltammograms indicates how their properties can be maintained at the time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信