J. R. Silva, W. P. Rodrigues, K. F. Ruas, J. S. Paixão, R. S. N. Lima, J. A. M. Filho, J. Garcia, B. Schaffer, Julián Cuevas González, E. Campostrini
{"title":"木瓜(Carica papaya L.)的光、光合能力和生长:简要综述","authors":"J. R. Silva, W. P. Rodrigues, K. F. Ruas, J. S. Paixão, R. S. N. Lima, J. A. M. Filho, J. Garcia, B. Schaffer, Julián Cuevas González, E. Campostrini","doi":"10.21475/AJCS.19.13.03.P1607","DOIUrl":null,"url":null,"abstract":"Papaya (Carica papaya L.) is one of the main horticultural crops of many tropical and subtropical regions. The fruit is sold either as a fresh product or processed into drinks, jams, candies, dried and crystallized fruit, while the enzyme papain is used for medicinal purposes. Papaya fruits have high vitamins A and C contents, as well as are good sources of calcium. Brazil is one of the most important producers and exporters of papaya in the world; in 2016 c.a., 1,424,650 tons of papaya was produced in 30,372 hectares of the territory. Optimum light absorption and utilization by the canopy are important factors for maximizing papaya crop growth and productivity. Thus, knowing how papaya responds to light is important to develop management strategies to optimize fruit yield and quality. This short review aims to present the current research knowledge related to the effects of light intensity on the photosynthetic processes and growth of papaya. We demonstrate that photosynthetically active radiation (PAR) greatly affects the physiology of papaya. Understanding the interaction between light and physiological processes is extremely important for a sustainable profitable production under either greenhouse or field conditions. By using improved light science-based management, growers may optimize photosynthetic carbon assimilation and increase papaya yield and fruit quality","PeriodicalId":93772,"journal":{"name":"ISOEN 2019 : 18th International Symposium on Olfaction and Electronic Nose : 2019 symposium proceedings : ACROS Fukuoka, May 26-29, 2019. International Symposium on Olfaction and the Electronic Nose (18th : 2019 : Fukuoka-shi, Japan)","volume":"60 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Light, photosynthetic capacity and growth of papaya (Carica papaya L.): a short review\",\"authors\":\"J. R. Silva, W. P. Rodrigues, K. F. Ruas, J. S. Paixão, R. S. N. Lima, J. A. M. Filho, J. Garcia, B. Schaffer, Julián Cuevas González, E. Campostrini\",\"doi\":\"10.21475/AJCS.19.13.03.P1607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Papaya (Carica papaya L.) is one of the main horticultural crops of many tropical and subtropical regions. The fruit is sold either as a fresh product or processed into drinks, jams, candies, dried and crystallized fruit, while the enzyme papain is used for medicinal purposes. Papaya fruits have high vitamins A and C contents, as well as are good sources of calcium. Brazil is one of the most important producers and exporters of papaya in the world; in 2016 c.a., 1,424,650 tons of papaya was produced in 30,372 hectares of the territory. Optimum light absorption and utilization by the canopy are important factors for maximizing papaya crop growth and productivity. Thus, knowing how papaya responds to light is important to develop management strategies to optimize fruit yield and quality. This short review aims to present the current research knowledge related to the effects of light intensity on the photosynthetic processes and growth of papaya. We demonstrate that photosynthetically active radiation (PAR) greatly affects the physiology of papaya. Understanding the interaction between light and physiological processes is extremely important for a sustainable profitable production under either greenhouse or field conditions. By using improved light science-based management, growers may optimize photosynthetic carbon assimilation and increase papaya yield and fruit quality\",\"PeriodicalId\":93772,\"journal\":{\"name\":\"ISOEN 2019 : 18th International Symposium on Olfaction and Electronic Nose : 2019 symposium proceedings : ACROS Fukuoka, May 26-29, 2019. International Symposium on Olfaction and the Electronic Nose (18th : 2019 : Fukuoka-shi, Japan)\",\"volume\":\"60 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISOEN 2019 : 18th International Symposium on Olfaction and Electronic Nose : 2019 symposium proceedings : ACROS Fukuoka, May 26-29, 2019. International Symposium on Olfaction and the Electronic Nose (18th : 2019 : Fukuoka-shi, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/AJCS.19.13.03.P1607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISOEN 2019 : 18th International Symposium on Olfaction and Electronic Nose : 2019 symposium proceedings : ACROS Fukuoka, May 26-29, 2019. International Symposium on Olfaction and the Electronic Nose (18th : 2019 : Fukuoka-shi, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/AJCS.19.13.03.P1607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light, photosynthetic capacity and growth of papaya (Carica papaya L.): a short review
Papaya (Carica papaya L.) is one of the main horticultural crops of many tropical and subtropical regions. The fruit is sold either as a fresh product or processed into drinks, jams, candies, dried and crystallized fruit, while the enzyme papain is used for medicinal purposes. Papaya fruits have high vitamins A and C contents, as well as are good sources of calcium. Brazil is one of the most important producers and exporters of papaya in the world; in 2016 c.a., 1,424,650 tons of papaya was produced in 30,372 hectares of the territory. Optimum light absorption and utilization by the canopy are important factors for maximizing papaya crop growth and productivity. Thus, knowing how papaya responds to light is important to develop management strategies to optimize fruit yield and quality. This short review aims to present the current research knowledge related to the effects of light intensity on the photosynthetic processes and growth of papaya. We demonstrate that photosynthetically active radiation (PAR) greatly affects the physiology of papaya. Understanding the interaction between light and physiological processes is extremely important for a sustainable profitable production under either greenhouse or field conditions. By using improved light science-based management, growers may optimize photosynthetic carbon assimilation and increase papaya yield and fruit quality