基于局部三元模式统计的无参考图像质量评价

P. Freitas, W. Y. L. Akamine, Mylène C. Q. Farias
{"title":"基于局部三元模式统计的无参考图像质量评价","authors":"P. Freitas, W. Y. L. Akamine, Mylène C. Q. Farias","doi":"10.1109/QoMEX.2016.7498959","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new no-reference image quality assessment (NR-IQA) method that uses a machine learning technique based on Local Ternary Pattern (LTP) descriptors. LTP descriptors are a generalization of Local Binary Pattern (LBP) texture descriptors that provide a significant performance improvement when compared to LBP. More specifically, LTP is less susceptible to noise in uniform regions, but no longer rigidly invariant to gray-level transformation. Due to its insensitivity to noise, LTP descriptors are not able to detect milder image degradation. To tackle this issue, we propose a strategy that uses multiple LTP channels to extract texture information. The prediction algorithm uses the histograms of these LTP channels as features for the training procedure. The proposed method is able to blindly predict image quality, i.e., the method is no-reference (NR). Results show that the proposed method is considerably faster than other state-of-the-art no-reference methods, while maintaining a competitive image quality prediction accuracy.","PeriodicalId":6645,"journal":{"name":"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"53 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"No-reference image quality assessment based on statistics of Local Ternary Pattern\",\"authors\":\"P. Freitas, W. Y. L. Akamine, Mylène C. Q. Farias\",\"doi\":\"10.1109/QoMEX.2016.7498959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new no-reference image quality assessment (NR-IQA) method that uses a machine learning technique based on Local Ternary Pattern (LTP) descriptors. LTP descriptors are a generalization of Local Binary Pattern (LBP) texture descriptors that provide a significant performance improvement when compared to LBP. More specifically, LTP is less susceptible to noise in uniform regions, but no longer rigidly invariant to gray-level transformation. Due to its insensitivity to noise, LTP descriptors are not able to detect milder image degradation. To tackle this issue, we propose a strategy that uses multiple LTP channels to extract texture information. The prediction algorithm uses the histograms of these LTP channels as features for the training procedure. The proposed method is able to blindly predict image quality, i.e., the method is no-reference (NR). Results show that the proposed method is considerably faster than other state-of-the-art no-reference methods, while maintaining a competitive image quality prediction accuracy.\",\"PeriodicalId\":6645,\"journal\":{\"name\":\"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)\",\"volume\":\"53 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QoMEX.2016.7498959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2016.7498959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在本文中,我们提出了一种新的无参考图像质量评估(NR-IQA)方法,该方法使用基于局部三元模式(LTP)描述符的机器学习技术。LTP描述符是局部二值模式(LBP)纹理描述符的泛化,与LBP相比,它提供了显着的性能改进。更具体地说,LTP对均匀区域的噪声影响较小,但对灰度变换不再严格不变。由于其对噪声不敏感,LTP描述符不能检测到较轻微的图像退化。为了解决这个问题,我们提出了一种使用多个LTP通道提取纹理信息的策略。预测算法使用这些LTP通道的直方图作为训练过程的特征。该方法能够盲目预测图像质量,即无参考(NR)方法。结果表明,该方法在保持具有竞争力的图像质量预测精度的同时,比其他先进的无参考方法要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-reference image quality assessment based on statistics of Local Ternary Pattern
In this paper, we propose a new no-reference image quality assessment (NR-IQA) method that uses a machine learning technique based on Local Ternary Pattern (LTP) descriptors. LTP descriptors are a generalization of Local Binary Pattern (LBP) texture descriptors that provide a significant performance improvement when compared to LBP. More specifically, LTP is less susceptible to noise in uniform regions, but no longer rigidly invariant to gray-level transformation. Due to its insensitivity to noise, LTP descriptors are not able to detect milder image degradation. To tackle this issue, we propose a strategy that uses multiple LTP channels to extract texture information. The prediction algorithm uses the histograms of these LTP channels as features for the training procedure. The proposed method is able to blindly predict image quality, i.e., the method is no-reference (NR). Results show that the proposed method is considerably faster than other state-of-the-art no-reference methods, while maintaining a competitive image quality prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信