{"title":"优化非理想工况下光伏系统电模型的准确性","authors":"Diego Torres-Lobera, S. Valkealahti","doi":"10.1109/EPE.2014.6910873","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) technology permits us to harness and transform solar radiation into electricity. However, PV power generators are still a marginal share in the global power generation capacity. One of the main reasons for it is that PV systems are greatly dependent on the atmospheric conditions affecting their operation. Furthermore, series connection of PV cells is prone to power losses when the electrical characteristics of the cells are dissimilar or the cells operate under non-uniform operating conditions. Accurate electrical models are required to analyze PV systems under non-ideal operating conditions, for example, to optimize the design of grid inverters. This paper proposes a method to optimize the accuracy of the electrical models based on a sensitivity analysis of the parameters of the model and on the evaluation of the normalized root mean square error between the measured and simulated P-V characteristics continuously by the second.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"57 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing the accuracy of electrical models of PV systems operating under non-ideal conditions\",\"authors\":\"Diego Torres-Lobera, S. Valkealahti\",\"doi\":\"10.1109/EPE.2014.6910873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) technology permits us to harness and transform solar radiation into electricity. However, PV power generators are still a marginal share in the global power generation capacity. One of the main reasons for it is that PV systems are greatly dependent on the atmospheric conditions affecting their operation. Furthermore, series connection of PV cells is prone to power losses when the electrical characteristics of the cells are dissimilar or the cells operate under non-uniform operating conditions. Accurate electrical models are required to analyze PV systems under non-ideal operating conditions, for example, to optimize the design of grid inverters. This paper proposes a method to optimize the accuracy of the electrical models based on a sensitivity analysis of the parameters of the model and on the evaluation of the normalized root mean square error between the measured and simulated P-V characteristics continuously by the second.\",\"PeriodicalId\":6508,\"journal\":{\"name\":\"2014 16th European Conference on Power Electronics and Applications\",\"volume\":\"57 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th European Conference on Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2014.6910873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6910873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing the accuracy of electrical models of PV systems operating under non-ideal conditions
Photovoltaic (PV) technology permits us to harness and transform solar radiation into electricity. However, PV power generators are still a marginal share in the global power generation capacity. One of the main reasons for it is that PV systems are greatly dependent on the atmospheric conditions affecting their operation. Furthermore, series connection of PV cells is prone to power losses when the electrical characteristics of the cells are dissimilar or the cells operate under non-uniform operating conditions. Accurate electrical models are required to analyze PV systems under non-ideal operating conditions, for example, to optimize the design of grid inverters. This paper proposes a method to optimize the accuracy of the electrical models based on a sensitivity analysis of the parameters of the model and on the evaluation of the normalized root mean square error between the measured and simulated P-V characteristics continuously by the second.