我们如何从次采样音频信号中检测异常?

Y. Kawaguchi, Takashi Endo
{"title":"我们如何从次采样音频信号中检测异常?","authors":"Y. Kawaguchi, Takashi Endo","doi":"10.1109/MLSP.2017.8168164","DOIUrl":null,"url":null,"abstract":"We aim to reduce the cost of sound monitoring for maintain machinery by reducing the sampling rate, i.e., sub-Nyquist sampling. Monitoring based on sub-Nyquist sampling requires two sub-systems: a sub-system on-site for sampling machinery sounds at a low rate and a sub-system off-site for detecting anomalies from the subsampled signal. This paper proposes a method for achieving both subsystems. First, the proposed method uses non-uniform sampling to encode higher than the Nyquist frequency. Second, the method applies a long short-term memory-(LSTM)-based autoencoder network for detecting anomalies. The novelty of the proposed network is that the subsampled time-domain signal is demultiplexed and received as input in an end-to-end manner, enabling anomaly detection from the subsampled signal. Experimental results indicate that our method is suitable for anomaly detection from the subsampled signal.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"191 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"How can we detect anomalies from subsampled audio signals?\",\"authors\":\"Y. Kawaguchi, Takashi Endo\",\"doi\":\"10.1109/MLSP.2017.8168164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to reduce the cost of sound monitoring for maintain machinery by reducing the sampling rate, i.e., sub-Nyquist sampling. Monitoring based on sub-Nyquist sampling requires two sub-systems: a sub-system on-site for sampling machinery sounds at a low rate and a sub-system off-site for detecting anomalies from the subsampled signal. This paper proposes a method for achieving both subsystems. First, the proposed method uses non-uniform sampling to encode higher than the Nyquist frequency. Second, the method applies a long short-term memory-(LSTM)-based autoencoder network for detecting anomalies. The novelty of the proposed network is that the subsampled time-domain signal is demultiplexed and received as input in an end-to-end manner, enabling anomaly detection from the subsampled signal. Experimental results indicate that our method is suitable for anomaly detection from the subsampled signal.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"191 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

我们的目标是通过降低采样率(即次奈奎斯特采样)来降低维护机械的声音监测成本。基于次奈奎斯特采样的监测需要两个子系统:现场的子系统用于以低速率采样机械声音,而非现场的子系统用于从次采样信号中检测异常。本文提出了一种实现这两个子系统的方法。首先,该方法采用非均匀采样对高于奈奎斯特频率的信号进行编码。其次,采用基于长短期记忆(LSTM)的自编码器网络进行异常检测。所提出的网络的新颖之处在于,下采样的时域信号被解复用,并以端到端方式作为输入接收,从而能够从下采样信号中检测异常。实验结果表明,该方法适用于下采样信号的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How can we detect anomalies from subsampled audio signals?
We aim to reduce the cost of sound monitoring for maintain machinery by reducing the sampling rate, i.e., sub-Nyquist sampling. Monitoring based on sub-Nyquist sampling requires two sub-systems: a sub-system on-site for sampling machinery sounds at a low rate and a sub-system off-site for detecting anomalies from the subsampled signal. This paper proposes a method for achieving both subsystems. First, the proposed method uses non-uniform sampling to encode higher than the Nyquist frequency. Second, the method applies a long short-term memory-(LSTM)-based autoencoder network for detecting anomalies. The novelty of the proposed network is that the subsampled time-domain signal is demultiplexed and received as input in an end-to-end manner, enabling anomaly detection from the subsampled signal. Experimental results indicate that our method is suitable for anomaly detection from the subsampled signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信