代数模型计数

Q1 Mathematics
Angelika Kimmig , Guy Van den Broeck , Luc De Raedt
{"title":"代数模型计数","authors":"Angelika Kimmig ,&nbsp;Guy Van den Broeck ,&nbsp;Luc De Raedt","doi":"10.1016/j.jal.2016.11.031","DOIUrl":null,"url":null,"abstract":"<div><p>Weighted model counting (WMC) is a well-known inference task on knowledge bases, and the basis for some of the most efficient techniques for probabilistic inference in graphical models. We introduce algebraic model counting (AMC), a generalization of WMC to a semiring structure that provides a unified view on a range of tasks and existing results. We show that AMC generalizes many well-known tasks in a variety of domains such as probabilistic inference, soft constraints and network and database analysis. Furthermore, we investigate AMC from a knowledge compilation perspective and show that all AMC tasks can be evaluated using <span>sd-DNNF</span> circuits, which are strictly more succinct, and thus more efficient to evaluate, than direct representations of sets of models. We identify further characteristics of AMC instances that allow for evaluation on even more succinct circuits.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"22 ","pages":"Pages 46-62"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.031","citationCount":"60","resultStr":"{\"title\":\"Algebraic model counting\",\"authors\":\"Angelika Kimmig ,&nbsp;Guy Van den Broeck ,&nbsp;Luc De Raedt\",\"doi\":\"10.1016/j.jal.2016.11.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Weighted model counting (WMC) is a well-known inference task on knowledge bases, and the basis for some of the most efficient techniques for probabilistic inference in graphical models. We introduce algebraic model counting (AMC), a generalization of WMC to a semiring structure that provides a unified view on a range of tasks and existing results. We show that AMC generalizes many well-known tasks in a variety of domains such as probabilistic inference, soft constraints and network and database analysis. Furthermore, we investigate AMC from a knowledge compilation perspective and show that all AMC tasks can be evaluated using <span>sd-DNNF</span> circuits, which are strictly more succinct, and thus more efficient to evaluate, than direct representations of sets of models. We identify further characteristics of AMC instances that allow for evaluation on even more succinct circuits.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"22 \",\"pages\":\"Pages 46-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.031\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157086831630088X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157086831630088X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 60

摘要

加权模型计数(Weighted model counting, WMC)是一种众所周知的基于知识库的推理任务,也是图形模型中一些最有效的概率推理技术的基础。我们介绍了代数模型计数(AMC),这是WMC的一种推广,它提供了对一系列任务和现有结果的统一视图的半环结构。我们证明了AMC在概率推理、软约束、网络和数据库分析等各个领域推广了许多众所周知的任务。此外,我们从知识编译的角度研究了AMC,并表明所有AMC任务都可以使用sd-DNNF电路进行评估,这比直接表示模型集更简洁,因此评估效率更高。我们确定了AMC实例的进一步特征,允许对更简洁的电路进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic model counting

Weighted model counting (WMC) is a well-known inference task on knowledge bases, and the basis for some of the most efficient techniques for probabilistic inference in graphical models. We introduce algebraic model counting (AMC), a generalization of WMC to a semiring structure that provides a unified view on a range of tasks and existing results. We show that AMC generalizes many well-known tasks in a variety of domains such as probabilistic inference, soft constraints and network and database analysis. Furthermore, we investigate AMC from a knowledge compilation perspective and show that all AMC tasks can be evaluated using sd-DNNF circuits, which are strictly more succinct, and thus more efficient to evaluate, than direct representations of sets of models. We identify further characteristics of AMC instances that allow for evaluation on even more succinct circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信