求解带有Caputo分数阶导数的微分方程Cauchy问题的数值方法

IF 0.3 Q4 MECHANICS
Asiyat G. Omarova
{"title":"求解带有Caputo分数阶导数的微分方程Cauchy问题的数值方法","authors":"Asiyat G. Omarova","doi":"10.17223/19988621/81/3","DOIUrl":null,"url":null,"abstract":"The Cauchy problem for differential equations with fractional derivatives is used in many spheres of science and technology. It was the reason for the development of various methods for its solution, both analytic and approximate ones. The search of an exact solution of differential equations with fractional derivatives by analytic methods is a complex and ineffective task; for this reason, an attempt to solve the considered problem approximately is undertaken in this paper. gated on the segment [0, T]. The method of finite differences which is relatively primary to implement is used for the numerical solution. A difference scheme approximating the Cauchy problem with the first order is constructed on a uniform grid. The difference problem is studied for stability and convergence with a fixed value of the function α(t). It is shown that the numerical solution of the problem converges to the exact solution in the first order. Explicit recurrent formulas for the numerical solution are obtained. A computational experiment upon analysis of the numerical solution of the Cauchy problem is carried out. It is shown on the basis of the computational experiment that if we take the average value for α(t), the first order exactness takes place.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"50 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical method of solving the Cauchy problem for one differential equation with the Caputo fractional derivative\",\"authors\":\"Asiyat G. Omarova\",\"doi\":\"10.17223/19988621/81/3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cauchy problem for differential equations with fractional derivatives is used in many spheres of science and technology. It was the reason for the development of various methods for its solution, both analytic and approximate ones. The search of an exact solution of differential equations with fractional derivatives by analytic methods is a complex and ineffective task; for this reason, an attempt to solve the considered problem approximately is undertaken in this paper. gated on the segment [0, T]. The method of finite differences which is relatively primary to implement is used for the numerical solution. A difference scheme approximating the Cauchy problem with the first order is constructed on a uniform grid. The difference problem is studied for stability and convergence with a fixed value of the function α(t). It is shown that the numerical solution of the problem converges to the exact solution in the first order. Explicit recurrent formulas for the numerical solution are obtained. A computational experiment upon analysis of the numerical solution of the Cauchy problem is carried out. It is shown on the basis of the computational experiment that if we take the average value for α(t), the first order exactness takes place.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/81/3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/81/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

分数阶导数微分方程的柯西问题在许多科学技术领域都有应用。这是发展各种解法的原因,既有解析法,也有近似法。用解析方法求分数阶导数微分方程的精确解是一项复杂而无效的任务;为此,本文试图近似地解决所考虑的问题。对段[0,T]进行门控。数值解采用相对容易实现的有限差分法。在均匀网格上构造了一阶近似柯西问题的差分格式。研究了具有函数α(t)定值的差分问题的稳定性和收敛性。结果表明,该问题的数值解收敛于一阶精确解。给出了数值解的显式递推公式。在分析柯西问题数值解的基础上,进行了计算实验。在计算实验的基础上表明,如果取α(t)的平均值,则发生一阶精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical method of solving the Cauchy problem for one differential equation with the Caputo fractional derivative
The Cauchy problem for differential equations with fractional derivatives is used in many spheres of science and technology. It was the reason for the development of various methods for its solution, both analytic and approximate ones. The search of an exact solution of differential equations with fractional derivatives by analytic methods is a complex and ineffective task; for this reason, an attempt to solve the considered problem approximately is undertaken in this paper. gated on the segment [0, T]. The method of finite differences which is relatively primary to implement is used for the numerical solution. A difference scheme approximating the Cauchy problem with the first order is constructed on a uniform grid. The difference problem is studied for stability and convergence with a fixed value of the function α(t). It is shown that the numerical solution of the problem converges to the exact solution in the first order. Explicit recurrent formulas for the numerical solution are obtained. A computational experiment upon analysis of the numerical solution of the Cauchy problem is carried out. It is shown on the basis of the computational experiment that if we take the average value for α(t), the first order exactness takes place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信