拟多次谐波包络3:求解厄米流形上的monge - ampante方程

IF 1.2 1区 数学 Q1 MATHEMATICS
V. Guedj, C. H. Lu
{"title":"拟多次谐波包络3:求解厄米流形上的monge - ampante方程","authors":"V. Guedj, C. H. Lu","doi":"10.1515/crelle-2023-0030","DOIUrl":null,"url":null,"abstract":"Abstract We develop a new approach to L ∞ L^{\\infty} -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), https://arxiv.org/abs/2106.04273], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, Algebr. Geom. 9 (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"11 1","pages":"259 - 298"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds\",\"authors\":\"V. Guedj, C. H. Lu\",\"doi\":\"10.1515/crelle-2023-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a new approach to L ∞ L^{\\\\infty} -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), https://arxiv.org/abs/2106.04273], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, Algebr. Geom. 9 (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"11 1\",\"pages\":\"259 - 298\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0030\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0030","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

摘要

提出了复流形上退化的复monge - ampantere方程的L∞L^ {\infty}先验估计的新方法。它只依赖于拟多次谐波函数的紧性和包络性。在前传[准多次谐波包络1:Kähler流形上的均匀估计,预印本(2021),https://arxiv.org/abs/2106.04273]中,我们已经展示了这种方法如何允许人们获得Kähler几何中几个基本结果的新的有效证明。准多次谐波包络2:monge - ampante体积上的界,代数。[j] .地球物理学报,9(2022),6,688-713],我们研究了埃尔米特流形上monge - ampires体积的行为。我们将前者的技术推广到厄米特集合,并利用后者中建立的界,得到了新的相对先验估计,以及紧厄米特流形上退化复monge - ampante方程的几个存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds
Abstract We develop a new approach to L ∞ L^{\infty} -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), https://arxiv.org/abs/2106.04273], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, Algebr. Geom. 9 (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信