{"title":"拟多次谐波包络3:求解厄米流形上的monge - ampante方程","authors":"V. Guedj, C. H. Lu","doi":"10.1515/crelle-2023-0030","DOIUrl":null,"url":null,"abstract":"Abstract We develop a new approach to L ∞ L^{\\infty} -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), https://arxiv.org/abs/2106.04273], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, Algebr. Geom. 9 (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"11 1","pages":"259 - 298"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds\",\"authors\":\"V. Guedj, C. H. Lu\",\"doi\":\"10.1515/crelle-2023-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a new approach to L ∞ L^{\\\\infty} -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), https://arxiv.org/abs/2106.04273], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, Algebr. Geom. 9 (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"11 1\",\"pages\":\"259 - 298\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0030\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0030","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds
Abstract We develop a new approach to L ∞ L^{\infty} -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), https://arxiv.org/abs/2106.04273], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, Algebr. Geom. 9 (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.