随机环境下具有迁移的超临界分支过程的渐近性质

Q3 Mathematics
Yanqing Wang, Quansheng Liu
{"title":"随机环境下具有迁移的超临界分支过程的渐近性质","authors":"Yanqing Wang, Quansheng Liu","doi":"10.1515/eqc-2021-0030","DOIUrl":null,"url":null,"abstract":"Abstract This is a short survey about asymptotic properties of a supercritical branching process ( Z n ) (Z_{n}) with immigration in a stationary and ergodic or independent and identically distributed random environment. We first present basic properties of the fundamental submartingale ( W n ) (W_{n}) , about the a.s. convergence, the non-degeneracy of its limit 𝑊, the convergence in L p L^{p} for p ≥ 1 p\\geq 1 , and the boundedness of the harmonic moments E ⁢ W n - a \\mathbb{E}W_{n}^{-a} , a > 0 a>0 . We then present limit theorems and large deviation results on log ⁡ Z n \\log Z_{n} , including the law of large numbers, large and moderate deviation principles, the central limit theorem with Berry–Esseen’s bound, and Cramér’s large deviation expansion. Some key ideas of the proofs are also presented.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"35 1","pages":"145 - 155"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic Properties of a Supercritical Branching Process with Immigration in a Random Environment\",\"authors\":\"Yanqing Wang, Quansheng Liu\",\"doi\":\"10.1515/eqc-2021-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This is a short survey about asymptotic properties of a supercritical branching process ( Z n ) (Z_{n}) with immigration in a stationary and ergodic or independent and identically distributed random environment. We first present basic properties of the fundamental submartingale ( W n ) (W_{n}) , about the a.s. convergence, the non-degeneracy of its limit 𝑊, the convergence in L p L^{p} for p ≥ 1 p\\\\geq 1 , and the boundedness of the harmonic moments E ⁢ W n - a \\\\mathbb{E}W_{n}^{-a} , a > 0 a>0 . We then present limit theorems and large deviation results on log ⁡ Z n \\\\log Z_{n} , including the law of large numbers, large and moderate deviation principles, the central limit theorem with Berry–Esseen’s bound, and Cramér’s large deviation expansion. Some key ideas of the proofs are also presented.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"35 1\",\"pages\":\"145 - 155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2021-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了平稳遍历或独立同分布随机环境下具有迁移的超临界分支过程(zn) {(Z_n)}的渐近性质。我们首先给出了基本次鞅(wn) {(W_n)}的基本性质,关于a.s.收敛性,极限的非简并性𝑊,当p≥1 p {}\geq 1时,L^在L^p中的收敛性,以及谐波矩E ^ W n- a \mathbb{E} W_n{^ }a, a{> a>0的有界性。在此基础上,我们给出了log ln zn }\log Z_n{上的极限定理和大偏差结果,包括大数定律、大偏差和中等偏差原理、Berry-Esseen界的中心极限定理和cram大偏差展开式。给出了证明的一些关键思想。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Properties of a Supercritical Branching Process with Immigration in a Random Environment
Abstract This is a short survey about asymptotic properties of a supercritical branching process ( Z n ) (Z_{n}) with immigration in a stationary and ergodic or independent and identically distributed random environment. We first present basic properties of the fundamental submartingale ( W n ) (W_{n}) , about the a.s. convergence, the non-degeneracy of its limit 𝑊, the convergence in L p L^{p} for p ≥ 1 p\geq 1 , and the boundedness of the harmonic moments E ⁢ W n - a \mathbb{E}W_{n}^{-a} , a > 0 a>0 . We then present limit theorems and large deviation results on log ⁡ Z n \log Z_{n} , including the law of large numbers, large and moderate deviation principles, the central limit theorem with Berry–Esseen’s bound, and Cramér’s large deviation expansion. Some key ideas of the proofs are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信