基于圆标记的单台通用相机机器学习定位算法

Cheng Zerui, Huang Zizhao, Cai Zhigang, Sun Zihan, Wang Jiahui
{"title":"基于圆标记的单台通用相机机器学习定位算法","authors":"Cheng Zerui, Huang Zizhao, Cai Zhigang, Sun Zihan, Wang Jiahui","doi":"10.1109/IICSPI.2018.8690487","DOIUrl":null,"url":null,"abstract":"Indoor positioning is an important issue in warehousing. Nowadays, efficient automated guided vehicles (AGVs) with QR codes positioning system are popular in cargo sorting. The main disadvantage of them is low space utilization. Therefore, Circle-Marker-Based Machine Learning Positioning Algorithm (CMLPA), a monocular positioning method, is presented. Contrast with many systems focusing on eliminating the influences of deformation, CMLPA utilizes it to predict the distance and the position based on circle-markers with gradient boosting decision trees algorithm. The experimental result demonstrates that the average absolute error of CMLPA is low to 0.34 cm in 2 m*2m site while the maximum error is 4 cm. Thus, CMLPA shows great potential in storing field.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"178 1","pages":"11-15"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Circle-Marker-Based Machine Learning Positioning Algorithm with Single General-Purpose Camera\",\"authors\":\"Cheng Zerui, Huang Zizhao, Cai Zhigang, Sun Zihan, Wang Jiahui\",\"doi\":\"10.1109/IICSPI.2018.8690487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor positioning is an important issue in warehousing. Nowadays, efficient automated guided vehicles (AGVs) with QR codes positioning system are popular in cargo sorting. The main disadvantage of them is low space utilization. Therefore, Circle-Marker-Based Machine Learning Positioning Algorithm (CMLPA), a monocular positioning method, is presented. Contrast with many systems focusing on eliminating the influences of deformation, CMLPA utilizes it to predict the distance and the position based on circle-markers with gradient boosting decision trees algorithm. The experimental result demonstrates that the average absolute error of CMLPA is low to 0.34 cm in 2 m*2m site while the maximum error is 4 cm. Thus, CMLPA shows great potential in storing field.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"178 1\",\"pages\":\"11-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

室内定位是仓储中的一个重要问题。目前,具有QR码定位系统的高效自动导引车(agv)在货物分拣中很受欢迎。它们的主要缺点是空间利用率低。为此,提出了基于圆标记的机器学习定位算法(CMLPA)——一种单目定位方法。与许多注重消除变形影响的系统相比,CMLPA利用梯度增强决策树算法基于圆标记来预测距离和位置。实验结果表明,在2m *2m的位置,CMLPA的平均绝对误差低至0.34 cm,最大误差为4 cm。因此,CMLPA在存储领域显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circle-Marker-Based Machine Learning Positioning Algorithm with Single General-Purpose Camera
Indoor positioning is an important issue in warehousing. Nowadays, efficient automated guided vehicles (AGVs) with QR codes positioning system are popular in cargo sorting. The main disadvantage of them is low space utilization. Therefore, Circle-Marker-Based Machine Learning Positioning Algorithm (CMLPA), a monocular positioning method, is presented. Contrast with many systems focusing on eliminating the influences of deformation, CMLPA utilizes it to predict the distance and the position based on circle-markers with gradient boosting decision trees algorithm. The experimental result demonstrates that the average absolute error of CMLPA is low to 0.34 cm in 2 m*2m site while the maximum error is 4 cm. Thus, CMLPA shows great potential in storing field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信