多频交流电力系统潮流解决方案

Q. Nguyen, T. Ngo, S. Santoso
{"title":"多频交流电力系统潮流解决方案","authors":"Q. Nguyen, T. Ngo, S. Santoso","doi":"10.1109/TDC.2016.7519952","DOIUrl":null,"url":null,"abstract":"This paper proposes to enhance existing power flow solutions for application in multi-frequency AC power systems. The paper shows such power flow solutions can be obtained using existing methods provided that impedances of lines operating at different frequencies be reflected to their equivalent impedances at the fundamental power frequency. The paper first presents a mathematical proof of equivalent parameters in terms of power flow of a transmission line operated at a low frequency and the fundamental frequency. It is then validated by analyzing the power flow solutions of a power system modeled in PSCAD/EMTDC when it is operated at multi-frequency and at conventional 60 Hz conditions. An application of a low frequency AC transmission line is illustrated to demonstrate its superiority in terms of power carrying capacity over a typical fundamental-frequency AC transmission line.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Power flow solution for multi-frequency AC power systems\",\"authors\":\"Q. Nguyen, T. Ngo, S. Santoso\",\"doi\":\"10.1109/TDC.2016.7519952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to enhance existing power flow solutions for application in multi-frequency AC power systems. The paper shows such power flow solutions can be obtained using existing methods provided that impedances of lines operating at different frequencies be reflected to their equivalent impedances at the fundamental power frequency. The paper first presents a mathematical proof of equivalent parameters in terms of power flow of a transmission line operated at a low frequency and the fundamental frequency. It is then validated by analyzing the power flow solutions of a power system modeled in PSCAD/EMTDC when it is operated at multi-frequency and at conventional 60 Hz conditions. An application of a low frequency AC transmission line is illustrated to demonstrate its superiority in terms of power carrying capacity over a typical fundamental-frequency AC transmission line.\",\"PeriodicalId\":6497,\"journal\":{\"name\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"12 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2016.7519952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7519952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出改进现有的潮流方案,使之应用于多频交流电力系统。本文表明,只要将工作在不同频率的线路的阻抗反映到它们在基频处的等效阻抗上,就可以用现有的方法得到这样的潮流解。本文首先给出了低频和基频输电线路潮流等效参数的数学证明。然后通过分析在PSCAD/EMTDC中建模的电力系统在多频率和常规60 Hz条件下运行时的潮流解决方案来验证该方法。以低频交流传输线的应用为例,说明低频交流传输线在功率承载能力方面优于典型的基频交流传输线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power flow solution for multi-frequency AC power systems
This paper proposes to enhance existing power flow solutions for application in multi-frequency AC power systems. The paper shows such power flow solutions can be obtained using existing methods provided that impedances of lines operating at different frequencies be reflected to their equivalent impedances at the fundamental power frequency. The paper first presents a mathematical proof of equivalent parameters in terms of power flow of a transmission line operated at a low frequency and the fundamental frequency. It is then validated by analyzing the power flow solutions of a power system modeled in PSCAD/EMTDC when it is operated at multi-frequency and at conventional 60 Hz conditions. An application of a low frequency AC transmission line is illustrated to demonstrate its superiority in terms of power carrying capacity over a typical fundamental-frequency AC transmission line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信