变质量流变系统的扩展拉格朗日形式

IF 0.7 Q4 MECHANICS
D. Mušicki
{"title":"变质量流变系统的扩展拉格朗日形式","authors":"D. Mušicki","doi":"10.2298/TAM170601006M","DOIUrl":null,"url":null,"abstract":"In this paper the extended Lagrangian formalism for the rheonomic systems (Dj. Mušicki, 2004), which began with the modification of the mechanics of such systems (V. Vujičić, 1987), is extended to the systems with variable mass, with emphasis on the corresponding energy relations. This extended Lagrangian formalism is based on the extension of the set of chosen generalized coordinates by new quantities, suggested by the form of nonstationary constraints, which determine the position of the frame of reference in respect to which these generalized coordinates refer. As a consequence, an extended system of the Lagrangian equations is formulated, accommodated to the variability of the masses of particles, where the additional ones correspond to the additional generalized coordinates. By means of these equations, the energy relations of such systems have been studied, where it is demonstrated that here there are four types of energy conservation laws. The obtained energy laws are more complete and natural than the corresponding ones in the usual Lagrangian formulation for such systems. It is demonstrated that the obtained energy laws, are in full accordance with the energy laws in the corresponding vector formulation, if they are expressed in terms of the quantities introduced in this formulation of mechanics. The obtained results are illustrated by an example: the motion of a rocket, which ejects the gasses backwards, while this rocket moves up a straight line on an oblique plane, which glides uniformly in a horizontal direction.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extended Lagrangian formalism for rheonomic systems with variable mass\",\"authors\":\"D. Mušicki\",\"doi\":\"10.2298/TAM170601006M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the extended Lagrangian formalism for the rheonomic systems (Dj. Mušicki, 2004), which began with the modification of the mechanics of such systems (V. Vujičić, 1987), is extended to the systems with variable mass, with emphasis on the corresponding energy relations. This extended Lagrangian formalism is based on the extension of the set of chosen generalized coordinates by new quantities, suggested by the form of nonstationary constraints, which determine the position of the frame of reference in respect to which these generalized coordinates refer. As a consequence, an extended system of the Lagrangian equations is formulated, accommodated to the variability of the masses of particles, where the additional ones correspond to the additional generalized coordinates. By means of these equations, the energy relations of such systems have been studied, where it is demonstrated that here there are four types of energy conservation laws. The obtained energy laws are more complete and natural than the corresponding ones in the usual Lagrangian formulation for such systems. It is demonstrated that the obtained energy laws, are in full accordance with the energy laws in the corresponding vector formulation, if they are expressed in terms of the quantities introduced in this formulation of mechanics. The obtained results are illustrated by an example: the motion of a rocket, which ejects the gasses backwards, while this rocket moves up a straight line on an oblique plane, which glides uniformly in a horizontal direction.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM170601006M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM170601006M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了流变系统的扩展拉格朗日形式。Mušicki, 2004),开始于对这类系统的力学修正(V. vuji伊奇,1987),扩展到具有变质量的系统,强调相应的能量关系。这种扩展的拉格朗日形式是基于用新量扩展所选择的广义坐标集,这些新量由非平稳约束的形式所暗示,这些非平稳约束决定了这些广义坐标所参照的参照系的位置。因此,一个扩展的拉格朗日方程组被表述出来,适应了粒子质量的可变性,其中附加的粒子对应于附加的广义坐标。利用这些方程,研究了这类系统的能量关系,证明了这里有四种类型的能量守恒定律。所得的能量定律比通常拉格朗日公式中对应的能量定律更完整和自然。如果用力学公式中引入的量来表示,所得到的能量定律与相应矢量公式中的能量定律是完全一致的。用一个例子来说明所得结果:火箭的运动,它向后喷出气体,而火箭在斜面上沿直线向上运动,在水平方向上均匀滑翔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Lagrangian formalism for rheonomic systems with variable mass
In this paper the extended Lagrangian formalism for the rheonomic systems (Dj. Mušicki, 2004), which began with the modification of the mechanics of such systems (V. Vujičić, 1987), is extended to the systems with variable mass, with emphasis on the corresponding energy relations. This extended Lagrangian formalism is based on the extension of the set of chosen generalized coordinates by new quantities, suggested by the form of nonstationary constraints, which determine the position of the frame of reference in respect to which these generalized coordinates refer. As a consequence, an extended system of the Lagrangian equations is formulated, accommodated to the variability of the masses of particles, where the additional ones correspond to the additional generalized coordinates. By means of these equations, the energy relations of such systems have been studied, where it is demonstrated that here there are four types of energy conservation laws. The obtained energy laws are more complete and natural than the corresponding ones in the usual Lagrangian formulation for such systems. It is demonstrated that the obtained energy laws, are in full accordance with the energy laws in the corresponding vector formulation, if they are expressed in terms of the quantities introduced in this formulation of mechanics. The obtained results are illustrated by an example: the motion of a rocket, which ejects the gasses backwards, while this rocket moves up a straight line on an oblique plane, which glides uniformly in a horizontal direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信