基于增广减平均优化器的太阳能光伏系统参数辨识

G. Moustafa
{"title":"基于增广减平均优化器的太阳能光伏系统参数辨识","authors":"G. Moustafa","doi":"10.3390/eng4030103","DOIUrl":null,"url":null,"abstract":"Solar photovoltaic system parameter identification is crucial for effective performance management, design, and modeling of solar panel systems. This work presents the Subtraction-Average-Based Algorithm (SABA), a unique, enhanced evolutionary approach for solving optimization problems. The conventional SABA works by subtracting the mean of searching solutions from the position of those in the population in the area of search. In order to increase the search capabilities, this work proposes an Augmented SABA (ASABA) that incorporates a method of collaborative learning based on the best solution. In accordance with manufacturing, the suggested ASABA is used to effectively estimate Photovoltaic (PV) characteristics for two distinct solar PV modules, RTC France and Kyocera KC200GT PV modules. Through the adoption of the ASABA approach, the simulation findings improve the electrical characteristics of PV systems. The suggested ASABA outperforms the regular SABA in terms of efficiency and effectiveness. For the R.T.C France PV system, the suggested ASABA approach outperforms the traditional SABA technique by 90.1% and 87.8 for the single- and double-diode models, respectively. Also, for the Kyocera KC200GT PV systems, the suggested ASABA approach outperforms the traditional SABA technique by 99.1% and 99.6 for the single- and double-diode models, respectively. Furthermore, the suggested ASABA method is quantitatively superior to different current optimization algorithms.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Identification of Solar Photovoltaic Systems Using an Augmented Subtraction-Average-Based Optimizer\",\"authors\":\"G. Moustafa\",\"doi\":\"10.3390/eng4030103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar photovoltaic system parameter identification is crucial for effective performance management, design, and modeling of solar panel systems. This work presents the Subtraction-Average-Based Algorithm (SABA), a unique, enhanced evolutionary approach for solving optimization problems. The conventional SABA works by subtracting the mean of searching solutions from the position of those in the population in the area of search. In order to increase the search capabilities, this work proposes an Augmented SABA (ASABA) that incorporates a method of collaborative learning based on the best solution. In accordance with manufacturing, the suggested ASABA is used to effectively estimate Photovoltaic (PV) characteristics for two distinct solar PV modules, RTC France and Kyocera KC200GT PV modules. Through the adoption of the ASABA approach, the simulation findings improve the electrical characteristics of PV systems. The suggested ASABA outperforms the regular SABA in terms of efficiency and effectiveness. For the R.T.C France PV system, the suggested ASABA approach outperforms the traditional SABA technique by 90.1% and 87.8 for the single- and double-diode models, respectively. Also, for the Kyocera KC200GT PV systems, the suggested ASABA approach outperforms the traditional SABA technique by 99.1% and 99.6 for the single- and double-diode models, respectively. Furthermore, the suggested ASABA method is quantitatively superior to different current optimization algorithms.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4030103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4030103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳能光伏系统参数辨识对于太阳能电池板系统的有效性能管理、设计和建模至关重要。这项工作提出了基于减法平均算法(SABA),这是一种独特的,增强的进化方法,用于解决优化问题。传统的SABA的工作原理是从搜索区域内的种群中搜索解的位置减去搜索解的平均值。为了提高搜索能力,本工作提出了一个增强的SABA (ASABA),它包含了一种基于最佳解决方案的协作学习方法。根据制造,建议的ASABA用于有效估计两种不同的太阳能光伏组件,RTC法国和京瓷KC200GT光伏组件的光伏(PV)特性。通过采用ASABA方法,仿真结果改善了光伏系统的电气特性。建议的ASABA在效率和有效性方面优于常规的SABA。对于rtc France光伏系统,建议的ASABA方法在单二极管和双二极管模型上分别比传统的SABA技术高出90.1%和87.8。此外,对于京瓷KC200GT光伏系统,建议的ASABA方法在单二极管和双二极管模型上分别比传统的SABA技术高出99.1%和99.6%。此外,所提出的ASABA方法在数量上优于现有的各种优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Identification of Solar Photovoltaic Systems Using an Augmented Subtraction-Average-Based Optimizer
Solar photovoltaic system parameter identification is crucial for effective performance management, design, and modeling of solar panel systems. This work presents the Subtraction-Average-Based Algorithm (SABA), a unique, enhanced evolutionary approach for solving optimization problems. The conventional SABA works by subtracting the mean of searching solutions from the position of those in the population in the area of search. In order to increase the search capabilities, this work proposes an Augmented SABA (ASABA) that incorporates a method of collaborative learning based on the best solution. In accordance with manufacturing, the suggested ASABA is used to effectively estimate Photovoltaic (PV) characteristics for two distinct solar PV modules, RTC France and Kyocera KC200GT PV modules. Through the adoption of the ASABA approach, the simulation findings improve the electrical characteristics of PV systems. The suggested ASABA outperforms the regular SABA in terms of efficiency and effectiveness. For the R.T.C France PV system, the suggested ASABA approach outperforms the traditional SABA technique by 90.1% and 87.8 for the single- and double-diode models, respectively. Also, for the Kyocera KC200GT PV systems, the suggested ASABA approach outperforms the traditional SABA technique by 99.1% and 99.6 for the single- and double-diode models, respectively. Furthermore, the suggested ASABA method is quantitatively superior to different current optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信