{"title":"求高斯路径积分的一种新方法","authors":"M.J. Goovaerts","doi":"10.1016/0031-8914(74)90268-7","DOIUrl":null,"url":null,"abstract":"<div><p>A new method for evaluating the path integral corresponding to the harmonic oscillator with time-dependent frequency Ω(<em>t</em>) and acted on by a time-dependent perturbative force is given. The advantage of the present method consists in the fact that our analytical expression for this path integral can immediately be expanded as a series in the eigenfunctions of the corresponding Schrödinger equation.</p></div>","PeriodicalId":55605,"journal":{"name":"Physica","volume":"77 2","pages":"Pages 379-389"},"PeriodicalIF":0.0000,"publicationDate":"1974-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0031-8914(74)90268-7","citationCount":"6","resultStr":"{\"title\":\"A new method for evaluating Gaussian path integrals\",\"authors\":\"M.J. Goovaerts\",\"doi\":\"10.1016/0031-8914(74)90268-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new method for evaluating the path integral corresponding to the harmonic oscillator with time-dependent frequency Ω(<em>t</em>) and acted on by a time-dependent perturbative force is given. The advantage of the present method consists in the fact that our analytical expression for this path integral can immediately be expanded as a series in the eigenfunctions of the corresponding Schrödinger equation.</p></div>\",\"PeriodicalId\":55605,\"journal\":{\"name\":\"Physica\",\"volume\":\"77 2\",\"pages\":\"Pages 379-389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1974-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0031-8914(74)90268-7\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0031891474902687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0031891474902687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new method for evaluating Gaussian path integrals
A new method for evaluating the path integral corresponding to the harmonic oscillator with time-dependent frequency Ω(t) and acted on by a time-dependent perturbative force is given. The advantage of the present method consists in the fact that our analytical expression for this path integral can immediately be expanded as a series in the eigenfunctions of the corresponding Schrödinger equation.