亚临界单调元胞自动机

Pub Date : 2022-03-03 DOI:10.1002/rsa.21174
P. Balister, B. Bollob'as, R. Morris, Paul Smith
{"title":"亚临界单调元胞自动机","authors":"P. Balister, B. Bollob'as, R. Morris, Paul Smith","doi":"10.1002/rsa.21174","DOIUrl":null,"url":null,"abstract":"We study monotone cellular automata (also known as $\\mathcal{U}$-bootstrap percolation) in $\\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollob\\'as, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subcritical monotone cellular automata\",\"authors\":\"P. Balister, B. Bollob'as, R. Morris, Paul Smith\",\"doi\":\"10.1002/rsa.21174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study monotone cellular automata (also known as $\\\\mathcal{U}$-bootstrap percolation) in $\\\\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollob\\\\'as, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了$\mathbb{Z}^d$中具有随机初始配置的单调元胞自动机(也称为$\mathcal{U}$-bootstrap渗流)。我们证实了Balister、Bollob\ as、Przykucki和Smith在二维上证明了相应结果的一个猜想,证明了所有亚临界模型的临界概率不为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Subcritical monotone cellular automata
We study monotone cellular automata (also known as $\mathcal{U}$-bootstrap percolation) in $\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollob\'as, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信