{"title":"三元电解质体系(Nicl2/Triton X-100/H2O)在T=298.15±0.1 K时平均活度系数的测量与建模","authors":"M. Bagherinia, Sahar Yousefnia","doi":"10.30492/IJCCE.2021.141650.4449","DOIUrl":null,"url":null,"abstract":"In this work, the results relating to the thermodynamic properties for the ternary electrolyte system of (NiCl2 + Triton X-100 + water) using the potentiometric method were reported at T = 298.15 K. The electromotive force measurements were carried out on the galvanic cell without liquid junction of the type: Ni2+-ISE | NiCl2 (m), Triton X-100 (%wt.), H2O (100-%wt.) | AgCl|Ag over total ionic strengths from 0.0010 to 6.0000 mol.kg-1 for different percentage mass fraction of Triton X-100 (%wt. = 0.0, 1.0, 2.5, 5.0, 7.5 and 10.0). The mean activity coefficients of NiCl2 were determined by using potentiometric data. Then, the mean activity coefficients of NiCl2 were correlated with Pitzer ion interaction model and TCPC model. The Pitzer ion-interaction parameters (βo, β1 and C^∅) and the adjustable parameters (b and S) of TCPC model were determined by correlating of data for the series under investigated system. The Pitzer ion interaction parameters were used to calculating of thermodynamic properties such as the osmotic coefficients and the excess Gibbs energy of solution. The result showed that the Pitzer ion interaction model could be used to investigation of the system, successfully.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement and modeling of mean activity coefficients in ternary electrolyte system (Nicl2/Triton X-100/H2O) at T=298.15 ± 0.1 K\",\"authors\":\"M. Bagherinia, Sahar Yousefnia\",\"doi\":\"10.30492/IJCCE.2021.141650.4449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the results relating to the thermodynamic properties for the ternary electrolyte system of (NiCl2 + Triton X-100 + water) using the potentiometric method were reported at T = 298.15 K. The electromotive force measurements were carried out on the galvanic cell without liquid junction of the type: Ni2+-ISE | NiCl2 (m), Triton X-100 (%wt.), H2O (100-%wt.) | AgCl|Ag over total ionic strengths from 0.0010 to 6.0000 mol.kg-1 for different percentage mass fraction of Triton X-100 (%wt. = 0.0, 1.0, 2.5, 5.0, 7.5 and 10.0). The mean activity coefficients of NiCl2 were determined by using potentiometric data. Then, the mean activity coefficients of NiCl2 were correlated with Pitzer ion interaction model and TCPC model. The Pitzer ion-interaction parameters (βo, β1 and C^∅) and the adjustable parameters (b and S) of TCPC model were determined by correlating of data for the series under investigated system. The Pitzer ion interaction parameters were used to calculating of thermodynamic properties such as the osmotic coefficients and the excess Gibbs energy of solution. The result showed that the Pitzer ion interaction model could be used to investigation of the system, successfully.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.141650.4449\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.141650.4449","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Measurement and modeling of mean activity coefficients in ternary electrolyte system (Nicl2/Triton X-100/H2O) at T=298.15 ± 0.1 K
In this work, the results relating to the thermodynamic properties for the ternary electrolyte system of (NiCl2 + Triton X-100 + water) using the potentiometric method were reported at T = 298.15 K. The electromotive force measurements were carried out on the galvanic cell without liquid junction of the type: Ni2+-ISE | NiCl2 (m), Triton X-100 (%wt.), H2O (100-%wt.) | AgCl|Ag over total ionic strengths from 0.0010 to 6.0000 mol.kg-1 for different percentage mass fraction of Triton X-100 (%wt. = 0.0, 1.0, 2.5, 5.0, 7.5 and 10.0). The mean activity coefficients of NiCl2 were determined by using potentiometric data. Then, the mean activity coefficients of NiCl2 were correlated with Pitzer ion interaction model and TCPC model. The Pitzer ion-interaction parameters (βo, β1 and C^∅) and the adjustable parameters (b and S) of TCPC model were determined by correlating of data for the series under investigated system. The Pitzer ion interaction parameters were used to calculating of thermodynamic properties such as the osmotic coefficients and the excess Gibbs energy of solution. The result showed that the Pitzer ion interaction model could be used to investigation of the system, successfully.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.