用模糊强正则关系刻画模糊超环的派生幂零(Engel)李环

IF 1.3 Q2 MATHEMATICS, APPLIED
E. Mohammadzadeh, R. Borzooei, F. Mohammadzadeh, S. Ahn
{"title":"用模糊强正则关系刻画模糊超环的派生幂零(Engel)李环","authors":"E. Mohammadzadeh, R. Borzooei, F. Mohammadzadeh, S. Ahn","doi":"10.1080/16168658.2022.2152883","DOIUrl":null,"url":null,"abstract":"In this paper, we determined a new characterisation of the derived nilpotent (Engel) Lie ring of fuzzy hyperrings by fuzzy strongly regular relation ( ). Moreover, we proved that for a fuzzy hyperring S, the quotient ( ) was a nilpotent (Engel) Lie ring. Also, we introduced the notion of an ζ-role of a fuzzy hyperring and investigated its essential properties. Basically, we stated a necessary and sufficient condition for transitivity of ζ. Also, we studied the relationship between the strongly regular relation and ζ-role of a given fuzzy hyperring.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"12 1","pages":"407 - 424"},"PeriodicalIF":1.3000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Derived Nilpotent (Engel) Lie Ring of Fuzzy Hyperrings by Using Fuzzy Strongly Regular Relations\",\"authors\":\"E. Mohammadzadeh, R. Borzooei, F. Mohammadzadeh, S. Ahn\",\"doi\":\"10.1080/16168658.2022.2152883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we determined a new characterisation of the derived nilpotent (Engel) Lie ring of fuzzy hyperrings by fuzzy strongly regular relation ( ). Moreover, we proved that for a fuzzy hyperring S, the quotient ( ) was a nilpotent (Engel) Lie ring. Also, we introduced the notion of an ζ-role of a fuzzy hyperring and investigated its essential properties. Basically, we stated a necessary and sufficient condition for transitivity of ζ. Also, we studied the relationship between the strongly regular relation and ζ-role of a given fuzzy hyperring.\",\"PeriodicalId\":37623,\"journal\":{\"name\":\"Fuzzy Information and Engineering\",\"volume\":\"12 1\",\"pages\":\"407 - 424\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Information and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16168658.2022.2152883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2022.2152883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用模糊强正则关系确定了模糊超环的幂零(Engel)李环的一个新的刻画。进一步证明了对于模糊超环S,商()是幂零的(Engel)李环。同时,我们引入了模糊超环的ζ-作用的概念,并研究了它的基本性质。基本上,我们给出了ζ传递性的一个充分必要条件。同时,研究了给定模糊超环的强正则关系与ζ-作用之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Derived Nilpotent (Engel) Lie Ring of Fuzzy Hyperrings by Using Fuzzy Strongly Regular Relations
In this paper, we determined a new characterisation of the derived nilpotent (Engel) Lie ring of fuzzy hyperrings by fuzzy strongly regular relation ( ). Moreover, we proved that for a fuzzy hyperring S, the quotient ( ) was a nilpotent (Engel) Lie ring. Also, we introduced the notion of an ζ-role of a fuzzy hyperring and investigated its essential properties. Basically, we stated a necessary and sufficient condition for transitivity of ζ. Also, we studied the relationship between the strongly regular relation and ζ-role of a given fuzzy hyperring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
40 weeks
期刊介绍: Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信