广义异质超几何函数与椭圆Wishart矩阵最大特征值的分布

Pub Date : 2021-04-26 DOI:10.1142/s2010326322500344
A. Shinozaki, Koki Shimizu, Hiroki Hashiguchi
{"title":"广义异质超几何函数与椭圆Wishart矩阵最大特征值的分布","authors":"A. Shinozaki, Koki Shimizu, Hiroki Hashiguchi","doi":"10.1142/s2010326322500344","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the exact distributions of eigenvalues of a singular Wishart matrix under the elliptical model. We define the generalized heterogeneous hypergeometric functions with two matrix arguments and provide the convergence conditions of these functions. The joint density of eigenvalues and the distribution function of the largest eigenvalue for a singular elliptical Wishart matrix are represented with these functions. Numerical computations for the distribution of the largest eigenvalue are conducted under the matrix-variate [Formula: see text] and Kotz type models.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized heterogeneous hypergeometric functions and the distribution of the largest eigenvalue of an elliptical Wishart matrix\",\"authors\":\"A. Shinozaki, Koki Shimizu, Hiroki Hashiguchi\",\"doi\":\"10.1142/s2010326322500344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive the exact distributions of eigenvalues of a singular Wishart matrix under the elliptical model. We define the generalized heterogeneous hypergeometric functions with two matrix arguments and provide the convergence conditions of these functions. The joint density of eigenvalues and the distribution function of the largest eigenvalue for a singular elliptical Wishart matrix are represented with these functions. Numerical computations for the distribution of the largest eigenvalue are conducted under the matrix-variate [Formula: see text] and Kotz type models.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文导出了椭圆模型下奇异Wishart矩阵特征值的精确分布。定义了具有两个矩阵参数的广义异质超几何函数,并给出了这些函数的收敛条件。用这些函数表示了奇异椭圆Wishart矩阵的特征值联合密度和最大特征值的分布函数。在矩阵-变量[公式:见文本]和Kotz型模型下进行了最大特征值分布的数值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized heterogeneous hypergeometric functions and the distribution of the largest eigenvalue of an elliptical Wishart matrix
In this paper, we derive the exact distributions of eigenvalues of a singular Wishart matrix under the elliptical model. We define the generalized heterogeneous hypergeometric functions with two matrix arguments and provide the convergence conditions of these functions. The joint density of eigenvalues and the distribution function of the largest eigenvalue for a singular elliptical Wishart matrix are represented with these functions. Numerical computations for the distribution of the largest eigenvalue are conducted under the matrix-variate [Formula: see text] and Kotz type models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信