基于神经网络的多层感知器在模拟电路中的应用

D. Sudha, G. Amarnath, V. A
{"title":"基于神经网络的多层感知器在模拟电路中的应用","authors":"D. Sudha, G. Amarnath, V. A","doi":"10.1109/ICSES52305.2021.9633958","DOIUrl":null,"url":null,"abstract":"This manuscript presents an artificial-neural-network based programmable-neuron for implementation of analog circuits with multi-layer-perceptron. The proposed programmable-neuron can estimate linear, hyperbolic, tangent and sigmoid functions which are used to activate the analog circuits. With this, a neural-network-designer can utilize maximum number of controller-bits to select an activation-function kind with no actual change. For this neuron, 0.18-µm CMOS-technology is used for simulations and demonstrates a good estimation in peak error with ideal sigmoid and hyperbolic tangent function by 7.3% and 29.34% respectively. To assess the usefulness of the neuron, a Multi-Layer-Perceptron-neural-network (MLP-NN) is used. The MLP-NN is trained to carry out XOR-logic gate for handling signals in frequency-range from 3mHz to 60MHz. The correctness of the proposed-neuron is over 99.9%. These results shows that there is a decrease of 49% in power consumption with related to previous works.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Analog Circuits by Neural-Network based Multi-Layer-Perceptron\",\"authors\":\"D. Sudha, G. Amarnath, V. A\",\"doi\":\"10.1109/ICSES52305.2021.9633958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript presents an artificial-neural-network based programmable-neuron for implementation of analog circuits with multi-layer-perceptron. The proposed programmable-neuron can estimate linear, hyperbolic, tangent and sigmoid functions which are used to activate the analog circuits. With this, a neural-network-designer can utilize maximum number of controller-bits to select an activation-function kind with no actual change. For this neuron, 0.18-µm CMOS-technology is used for simulations and demonstrates a good estimation in peak error with ideal sigmoid and hyperbolic tangent function by 7.3% and 29.34% respectively. To assess the usefulness of the neuron, a Multi-Layer-Perceptron-neural-network (MLP-NN) is used. The MLP-NN is trained to carry out XOR-logic gate for handling signals in frequency-range from 3mHz to 60MHz. The correctness of the proposed-neuron is over 99.9%. These results shows that there is a decrease of 49% in power consumption with related to previous works.\",\"PeriodicalId\":6777,\"journal\":{\"name\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSES52305.2021.9633958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于人工神经网络的可编程神经元,用于实现具有多层感知器的模拟电路。所提出的可编程神经元可以估计用于激活模拟电路的线性、双曲、正切和s型函数。有了这个,神经网络设计者可以利用最大数量的控制器位来选择激活函数类型,而不需要实际的改变。对该神经元采用0.18µm cmos技术进行仿真,结果表明,理想s型函数和双曲正切函数的峰值误差估计分别为7.3%和29.34%。为了评估神经元的有用性,我们使用了多层感知器神经网络(MLP-NN)。MLP-NN被训练为执行异或逻辑门,用于处理频率范围从3mHz到60MHz的信号。所提神经元的正确率超过99.9%。这些结果表明,与之前的工作相比,功耗降低了49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Analog Circuits by Neural-Network based Multi-Layer-Perceptron
This manuscript presents an artificial-neural-network based programmable-neuron for implementation of analog circuits with multi-layer-perceptron. The proposed programmable-neuron can estimate linear, hyperbolic, tangent and sigmoid functions which are used to activate the analog circuits. With this, a neural-network-designer can utilize maximum number of controller-bits to select an activation-function kind with no actual change. For this neuron, 0.18-µm CMOS-technology is used for simulations and demonstrates a good estimation in peak error with ideal sigmoid and hyperbolic tangent function by 7.3% and 29.34% respectively. To assess the usefulness of the neuron, a Multi-Layer-Perceptron-neural-network (MLP-NN) is used. The MLP-NN is trained to carry out XOR-logic gate for handling signals in frequency-range from 3mHz to 60MHz. The correctness of the proposed-neuron is over 99.9%. These results shows that there is a decrease of 49% in power consumption with related to previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信