基于条件对抗网络的PolSAR波段图像转换

Anery Patel, Maitreya Patel, Tushar Gadhiya, A. Roy
{"title":"基于条件对抗网络的PolSAR波段图像转换","authors":"Anery Patel, Maitreya Patel, Tushar Gadhiya, A. Roy","doi":"10.1109/SENSORS43011.2019.8956702","DOIUrl":null,"url":null,"abstract":"PolSAR image captured at different frequency bands contains varied information of the same target object. It has been reported that multi-frequency PolSAR data incurs high acquisition costs and computational requirements. In this paper, we put forward a novel concept of PolSAR band-to-band image translation to synthesize multi-frequency PolSAR images from a single frequency PolSAR image. Our proposed method uses PolSAR images captured at a particular frequency to generate its representation in different frequency bands based on image representation and target understanding. We leverage a deep neural network, particularly conditional adversarial network to perform the task. Our proposed framework shows promising results on AIRSAR dataset both qualitatively in terms of visual similarity and quantitatively in terms of root mean square error(RMSE).","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"68 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PolSAR Band-to-Band Image Translation Using Conditional Adversarial Networks\",\"authors\":\"Anery Patel, Maitreya Patel, Tushar Gadhiya, A. Roy\",\"doi\":\"10.1109/SENSORS43011.2019.8956702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PolSAR image captured at different frequency bands contains varied information of the same target object. It has been reported that multi-frequency PolSAR data incurs high acquisition costs and computational requirements. In this paper, we put forward a novel concept of PolSAR band-to-band image translation to synthesize multi-frequency PolSAR images from a single frequency PolSAR image. Our proposed method uses PolSAR images captured at a particular frequency to generate its representation in different frequency bands based on image representation and target understanding. We leverage a deep neural network, particularly conditional adversarial network to perform the task. Our proposed framework shows promising results on AIRSAR dataset both qualitatively in terms of visual similarity and quantitatively in terms of root mean square error(RMSE).\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":\"68 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在不同频段捕获的PolSAR图像包含同一目标物体的不同信息。据报道,多频率PolSAR数据的获取成本和计算需求很高。在本文中,我们提出了一种新的PolSAR波段图像平移的概念,将单频的PolSAR图像合成为多频的PolSAR图像。我们提出的方法使用在特定频率捕获的PolSAR图像,在图像表示和目标理解的基础上生成其在不同频段的表示。我们利用深度神经网络,特别是条件对抗网络来执行任务。我们提出的框架在AIRSAR数据集上显示了有希望的结果,无论是定性的视觉相似性还是定量的均方根误差(RMSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PolSAR Band-to-Band Image Translation Using Conditional Adversarial Networks
PolSAR image captured at different frequency bands contains varied information of the same target object. It has been reported that multi-frequency PolSAR data incurs high acquisition costs and computational requirements. In this paper, we put forward a novel concept of PolSAR band-to-band image translation to synthesize multi-frequency PolSAR images from a single frequency PolSAR image. Our proposed method uses PolSAR images captured at a particular frequency to generate its representation in different frequency bands based on image representation and target understanding. We leverage a deep neural network, particularly conditional adversarial network to perform the task. Our proposed framework shows promising results on AIRSAR dataset both qualitatively in terms of visual similarity and quantitatively in terms of root mean square error(RMSE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信