{"title":"基于特征模型和遗传算法的Java虚拟机标志优化","authors":"Felipe Canales, Geoffrey Hecht, Alexandre Bergel","doi":"10.1145/3447545.3451177","DOIUrl":null,"url":null,"abstract":"Optimizing the Java Virtual Machine (JVM) options in order to get the best performance out of a program for production is a challenging and time-consuming task. HotSpot, the Oracle's open-source Java VM implementation offers more than 500 options, called flags, that can be used to tune the JVM's compiler, garbage collector (GC), heap size and much more. In addition to being numerous, these flags are sometimes poorly documented and create a need of benchmarking to ensure that the flags and their associated values deliver the best performance and stability for a particular program to execute. Auto-tuning approaches have already been proposed in order to mitigate this burden. However, in spite of increasingly sophisticated search techniques allowing for powerful optimizations, these approaches take little account of the underlying complexities of JVM flags. Indeed, dependencies and incompatibilities between flags are non-trivial to express, which if not taken into account may lead to invalid or spurious flag configurations that should not be considered by the auto-tuner. In this paper, we propose a novel model, inspired by the feature model used in Software Product Line, which takes the complexity of JVM's flags into account. We then demonstrate the usefulness of this model, using it as an input of a Genetic Algorithm (GA) to optimize the execution times of DaCapo Benchmarks.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of Java Virtual Machine Flags using Feature Model and Genetic Algorithm\",\"authors\":\"Felipe Canales, Geoffrey Hecht, Alexandre Bergel\",\"doi\":\"10.1145/3447545.3451177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing the Java Virtual Machine (JVM) options in order to get the best performance out of a program for production is a challenging and time-consuming task. HotSpot, the Oracle's open-source Java VM implementation offers more than 500 options, called flags, that can be used to tune the JVM's compiler, garbage collector (GC), heap size and much more. In addition to being numerous, these flags are sometimes poorly documented and create a need of benchmarking to ensure that the flags and their associated values deliver the best performance and stability for a particular program to execute. Auto-tuning approaches have already been proposed in order to mitigate this burden. However, in spite of increasingly sophisticated search techniques allowing for powerful optimizations, these approaches take little account of the underlying complexities of JVM flags. Indeed, dependencies and incompatibilities between flags are non-trivial to express, which if not taken into account may lead to invalid or spurious flag configurations that should not be considered by the auto-tuner. In this paper, we propose a novel model, inspired by the feature model used in Software Product Line, which takes the complexity of JVM's flags into account. We then demonstrate the usefulness of this model, using it as an input of a Genetic Algorithm (GA) to optimize the execution times of DaCapo Benchmarks.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447545.3451177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Java Virtual Machine Flags using Feature Model and Genetic Algorithm
Optimizing the Java Virtual Machine (JVM) options in order to get the best performance out of a program for production is a challenging and time-consuming task. HotSpot, the Oracle's open-source Java VM implementation offers more than 500 options, called flags, that can be used to tune the JVM's compiler, garbage collector (GC), heap size and much more. In addition to being numerous, these flags are sometimes poorly documented and create a need of benchmarking to ensure that the flags and their associated values deliver the best performance and stability for a particular program to execute. Auto-tuning approaches have already been proposed in order to mitigate this burden. However, in spite of increasingly sophisticated search techniques allowing for powerful optimizations, these approaches take little account of the underlying complexities of JVM flags. Indeed, dependencies and incompatibilities between flags are non-trivial to express, which if not taken into account may lead to invalid or spurious flag configurations that should not be considered by the auto-tuner. In this paper, we propose a novel model, inspired by the feature model used in Software Product Line, which takes the complexity of JVM's flags into account. We then demonstrate the usefulness of this model, using it as an input of a Genetic Algorithm (GA) to optimize the execution times of DaCapo Benchmarks.